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Background. With the purpose of increasing axial 
loads in the 60s of the last century, a large-scale 
modernization of the track superstructure components 
began, which included the use of heavy rails –  R65, 
R75, ferro-concrete sleepers instead of wooden ones 
and an increase in the thickness of the ballast layer. At 
the same time, some specialists, including 
G. M. Shakhunyants [1], suggested that it is advisable 
to increase a diameter of a wheel of a non-self-
propelled rolling stock (car) from a nominal diameter 
of 950 mm to 1050 mm, which will lead to a decrease 
in frequency of oscillations of wheel sets, bogies and 
bodies. It should be noted that such a wheel diameter 
was previously realized in variants of shrouds and cast-
iron wheels of freight cars. Thus, the increase in axle 
loads was obtained through an increase in the mass 
and rigidity of the elements of track superstructure and 
rolling stock.

Objective. The objective of the authors is to 
consider choice of parameters of elastic elements of 
«car–track» mathematical model.

Methods. The authors use general scientific and 
engineering methods, comparative analysis, 
mathematical methods, evaluation approach.

Results.
1.

It is known that dynamic forces arising from the 
interaction of a wheel and a rail are an integral part of 
the dynamic processes of interaction of elements of 
a multi-mass system (running gears–track). 
Therefore, changes in the inertial parameters of the 
rail track facilitated the beginning of work on 
development of freight car bogies with an over-axle 
box and two-stage spring suspension (over-axle box 
and central box) [2]. In this regard, Uralvagonzavod 
(UVZ) in the 1970s developed and tested about a 
dozen variants of freight bogies with a two-stage 
suspension system. One of the options is shown in 

Pic. 1 [3]. Due to the use of two suspension stages, 
the mass of unsprung parts significantly decreased, 
which positively influenced the dynamic qualities of 
the bogie. Such a scheme is used in a simplified 
version on the railways in Europe [4]. Similar schemes 
are used in passenger cars.

The most common variant of such a bogie was the 
serial bogie model Y-25. The increase in speeds of 
passenger cars also required a reduction in the weight 
of unsprung running parts that participated in the 
oscillations of the «wheel–track» system. In particular, 
on high-speed trains of Japanese railway lines 
«Sinkasen» hollow axles and corrugated wheel disks 
began to be used [5]. One of the variants of the 
Japanese wheel design is shown in Pic. 2.

The work on creating hollow axes was carried out 
in the USSR by specialists from UVZ, VNIIZhT, VNITI, 
VNIIV and others [6, 7].

In the same period, scientific research in the 
field of transport materials science was aimed at 
increasing hardness and wear resistance of working 
surfaces of a wheel and a rail, and new methods for 
their thermal hardening were proposed. However, 
the implementation of these ideas did not lead to 
achievement of a desired result, since application 
of a classic braking scheme with one-sided pressing 
on domestic freight cars contributed to a decrease 
in strength properties of a wheel surface due to high 
temperatures occurring in the zone of interaction 
between a wheel and a brake shoe. The temperature 
below the surface of their contact could reach 
600–700°C [8]. In everyday practices there were 
«blue wheels», the sign that indicates high 
temperatures,  and there was a need for a 
comprehensive study of dynamic characteristics of 
objects of the system.

To study the dynamic characteristics of interaction 
of a railway vehicle and a rail track, special 
mathematical models of a multi-mass dynamic system 
have been developed in MIIT. Some results of such 
studies on choice of parameters of an over-axle box 
suspension stage are given in [3]. Simultaneous 
calculation models were used to study dynamic 
qualities of a bogie, in which a railway track is 
represented as a system of rigid supports with finite 
rigidity. However, in recent years, significant structural 
and technological changes have occurred in the 
elements of track superstructure (sleepers, rail 
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Pic. 1. Freight bogie model UVZ‑6КМ.
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fasteners, ballast prism), and there is a need for 
additional studies on the effect of these design 
solutions on dynamic properties of bogies, taking into 
account the climatic effects.

The strategy for development of rail transport until 
2030 envisages an increase in axle loads to 27–30 
ton-force, an increase in speed of movement, a 
reduction of the impact of interaction in the «wheel–rail» 
system, and a reduction of a lightweight of a container 
car by 25 percent. Since the sections and directions of 
railways included in the prospective range for trains of 
increased weight and length are envisaged in different 
climatic zones of the Russian Federation (North-West, 
South, East, Trans-Siberian), research should be 
carried out taking into account the climatic 
characteristics of different regions of operation.

2.
The railway track and carriages moving along it are 

a complex thermodynamic system with many degrees 
of freedom, linear (elastic) and nonlinear (visco-plastic) 
connections. In a general case, a design scheme of 
their interaction can be represented in the form of a 
system of rigid bodies elastically coupled to one 
another, performing forced oscillations under the 
influence of a disturbing dynamic load. Elastic 
characteristics are built by calculation or experimentally. 
The stiffness of viscoelastic coupling is assumed to be 
tangential or secant to a loading branch of a shock 
absorber compression diagram. In this case, a rigidity 
coefficient, which is a ratio of static rigidity to dynamic 
for different temperature effects, is assumed as an 
index of elastic and viscoelastic bonds.

In connection with the above circumstances, 
scientific research should be focused on the study 
of existing designs and on development of additional 
structures of shock-absorbing elements in the 
common «wheel–rail» system, selection of a 
damping material capable of absorbing vibrations 
over a wide range of ambient temperatures, both in 
static and dynamic modes [9]. The appearance of 
new materials in the system of dampling of the 
elements of track superstructure, in fact, opens the 
possibility for the use of analogs in the systems of 
over-axle box stage of suspension of freight cars. 
According to the authors, it is expedient to develop 
and study a version of a generalized wheel-track 
model according to the scheme shown in Pic. 3.

It is known that a measure of plasticity of an elastic 
material is a value of the coefficient of mechanical 
losses, determined from a compression diagram of a 
sample. The larger is the area of the hysteresis loop, 
the more energy is dissipated, spent on heating and 
activation of chemical processes, and hence on 
damping of forced oscillations. It is advisable to 
evaluate both static and dynamic hysteresis under 
various temperature influences.

The goal for us was to study the change in elastic-
hysteresis properties of TPK-5 polymer composition 
depending on thickness of a sample and a test 
temperature. The comparison was made according 
to the following indicators:

– Static rigidity for compression in the range of 
loads from 20 to 90 kN.

– Dynamic rigidity, determined at an amplitude of 
loads of 20–90 kN and a frequency of 10 ± 1 Hz.

– Rigidity coefficient, defined as a ratio of dynamic 
rigidity at an amplitude of loads of 20–90 kN and a 
frequency of 10 ± 1 Hz to static.

The results of experimental studies showed that 
static rigidity of samples with a thickness of 14,5 mm 
at a temperature of 23 ± 2°C was 78 kN/mm, and of a 

thickness of 10 mm was of123 kN/mm (Pic. 4), which 
is ≈ 1,5 times (by ≈ 50 %) greater than static rigidity 
of samples with a thickness of 14,5 mm. Consequently, 
static rigidity with decreasing thickness of a shock 
absorber decreases in proportion to its thickness 
under other equal test conditions.

Dynamic rigidity of samples 14,5 mm thick at a 
loading frequency of 10 ± 1 Hz and test temperatures 
of 23±2ºС, –40

–2
ºС, 50±2ºС was 136, 304 and 

133 kN/mm, and rigidity coefficient at the same 
temperatures was 1,74; 3,91; 1,71 respectively. A 
slight difference in indices of dynamic rigidity of 
samples at temperatures of 23±2ºС and 50±2ºС (within 
the allowed error of the experiment) indicates stability 
of physical properties of a polymer composition at 
elevated temperatures.

However, at a temperature of –40ºС, the value 
of dynamic rigidity of samples with a thickness of 
14,5 mm increases by 3,91 (Pic. 5) in comparison 
with the static one, and by 2,23 times in comparison 
with dynamic rigidity determined at a temperature 
of 23±2ºС (Pic. 6).

Dynamic rigidity of samples of reduced thickness 
(10 mm) at a loading frequency of 10 ± 1 Hz and test 
temperatures of 23 ± 2°C, –40

–2
ºС was 240 and 

358 kN/mm, and rigidity coefficient at the same 
temperatures was 1,96 and 2,96. Consequently, 
dynamic rigidity of samples 10 mm thick at a temperature 

а)

b)

Pic. 2. Variants of reducing the 
weight of unsprung running parts. 

a) Corrugated wheel, b) Hollow axis of a wheel set.

interaction can be represented in the form of a system of rigid bodies rigidly 

coupled to one another, performing forced oscillations under the influence of a 

disturbing dynamic load. Elastic characteristics are constructed by calculation or 

experimentally. The stiffness of viscoelastic coupling is assumed to be tangential 

or secant to a loading branch of a shock absorber compression diagram. In this 

case, a rigidity coefficient, which is a ratio of static rigidity to dynamic for 

different temperature effects, is used as an index of elastic and viscoelastic bonds.

In connection with the above circumstances, scientific research should be 

directed to the study of existing and development of additional structures of shock-

absorbing elements in the common «wheel−rail» system, selection of a damping 

material capable of absorbing vibrations over a wide range of ambient 

temperatures, both in static and dynamic modes [9]. The appearance of new 

materials in the system of dampling of the elements of track superstructure, in fact, 

opens the possibility for the use of analogs in the systems of over-axle box stage of 

suspension of freight cars. According to the authors, it is expedient to develop and 

study a version of a generalized wheel-track model according to the scheme shown 

in Pic. 3.

Pic. 3. Generalized model of interaction of running parts with track superstructure.

It is known that a measure of plasticity of an elastic material is a value of the 

coefficient of mechanical losses, determined from a compression diagram of a
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Pic. 3. Generalized model of interaction of running 
parts with track superstructure.
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Pic. 6. Static and dynamic hysteresis of samples with a thickness of 14,5 mm at +23ºС.

Dynamic rigidity of samples of reduced thickness (10 mm) at a loading

frequency of 10 ± 1 Hz and test temperatures of 23 ± 2°C, -40-2ºС was 240 and

358 kN/mm, and rigidity coefficient at the same temperatures was 1,96 and 2,96. 

Consequently, dynamic rigidity of samples 10 mm thick at a temperature of -40-2ºС

increased by 2,96 times in comparison with the static one and by 1,49 times − in 

comparison with the dynamic one at a temperature of 23±2ºС.

A comparative analysis of dynamic rigidity of samples from a TPK-5 polymer 

composition with a thickness of 14,5 mm and 10 mm showed that the value of 

dynamic rigidity decreases with a decrease in thickness at a temperature of 23±2ºС

by a factor of 1,77 (77 %) (Pic. 7) and at a temperature of -40-2ºС by 1,18 times 

(18 %). The decrease in rigidity coefficient for a given material at a temperature of -

40-2ºС is associated with the onset of a transition from a highly elastic state to a 

glassy state. Therefore, to reduce damping properties at a given temperature, the 

physical state of the material, rather than geometric characteristics of a shock 

absorber, becomes the predominant influence.
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sample. The larger is the area of the hysteresis loop, the more energy is dissipated, 

spent on heating and activation of chemical processes, and hence on damping of 

forced oscillations. It is advisable to evaluate both static and dynamic hysteresis 

under various temperature influences.

The goal for us was to study the change in elastic-hysteresis properties of 

TPK-5 polymer composition depending on thickness of a sample and a test 

temperature. The comparison was made according to the following indicators:

− Static rigidity for compression in the range of loads from 20 to 90 kN.

− Dynamic rigidity, determined at an amplitude of loads of 20-90 kN and a 

frequency of 10 ± 1 Hz.

− Rigidity coefficient, defined as a ratio of dynamic rigidity at an amplitude of 

loads of 20−90 kN and a frequency of 10 ± 1 Hz to static.

The results of experimental studies showed that static rigidity of samples with 

a thickness of 14,5 mm at a temperature of 23 ± 2°C was 78 kN/mm, and a thickness 

of 10 mm −123 kN/mm (Pic. 4), which is ≈ 1,5 times (by ≈ 50 %) is greater than

static rigidity of samples with a thickness of 14,5 mm. Consequently, static rigidity

with decreasing thickness of a shock absorber decreases in proportion to its 

thickness under equal other test conditions.

Pic. 4. Static hysteresis of samples from TPK-5 polymer composition 10 mm and 14,5 mm thick.
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Pic. 4. Static hysteresis 
of samples from TPK‑5 

polymer composition 10 mm 
and 14,5 mm thick.

Pic. 5. Static and dynamic 
hysteresis of samples with 

a thickness of 14,5 mm 
at ‑40ºС.

Dynamic rigidity of samples 14,5 mm thick at a loading frequency of 10 ± 

1 Hz and test temperatures of 23±2ºС, -40-2ºС, 50±2ºС was 136, 304 and 

133 kN/mm, and rigidity coefficient at the same temperatures was 1,74; 3,91; 1,71

no. A slight difference in indices of dynamic rigidity of samples at temperatures of 

23±2ºС and 50±2ºС (within the allowed error of the experiment) indicates stability 

of physical properties of a polymer composition at elevated temperatures.

However, at a temperature of -40ºС, the value of dynamic rigidity of samples 

with a thickness of 14,5 mm increases by 3,91 (Pic. 5) in comparison with the static 

one, and 2,23 times in comparison with dynamic rigidity determined at a 

temperature of 23±2ºС (Pic. 6).

Pic. 5. Static and dynamic hysteresis of samples with a thickness of 14,5 mm at -40ºС. 
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Pic. 6. Static and dynamic 
hysteresis of samples with 

a thickness of 14,5 mm 
at +23ºС.
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Pic. 7. Dynamic hysteresis in tests for dynamic rigidity at +23ºС

of spacers with a thickness of 14,5 mm and 10 mm.

The fraction of energy dissipation of elastic deformation under dynamic 

loading of samples 14,5 mm thick compared with static loading was 27,7 %, and of 

samples 10 mm – 31 %. Consequently, under dynamic loading with a frequency of 

10 Hz, damping of vertical oscillations decreases by ≈ 30 % for each thickness of a

sample and is a qualitative indicator for this material.

Conclusions. The results of experimental studies of changes in elastic-

hysteresis properties of a polymer composition under various operating conditions, 

as well as a generalized model of interaction of running parts with track 

superstructure, make it possible to effectively use the obtained data in a refined 

calculation model describing interaction of a railway track and rolling stock.

The effect of temperature factors on elastic-hysteresis properties of damping 

materials is highlighted.

The obtained experimental characteristics should be put into the 

mathematical model as input parameters of the projected damping element of an 

over-axle box unit to reduce vibration effects in a wide range of ambient 

temperatures.
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of –40
–2

ºС increased by 2,96 times in comparison with 
the static one and by 1,49 times –  in comparison with 
the dynamic one at a temperature of 23±2ºС.

A comparative analysis of dynamic rigidity of 
samples from a TPK-5 polymer composition with a 
thickness of 14,5 mm and 10 mm showed that the 
value of dynamic rigidity decreases with a decrease 
in thickness at a temperature of 23±2ºС by a factor 
of 1,77 (77 %) (Pic. 7) and at a temperature of –40

–2
ºС 

by 1,18 times (18 %). The decrease in rigidity 
coefficient for a given material at a temperature 
of –40

–2
ºС is associated with the onset of a transition 

from a highly elastic state to a glassy state. Therefore, 
to reduce damping properties at a given temperature, 
the physical state of the material, rather than 
geometric characteristics of a shock absorber, turns 
to be factor of predominant influence.

The fraction of energy dissipation of elastic 
deformation under dynamic loading of samples 
14,5 mm thick compared with static loading was 
27,7 %, and of samples 10 mm –  31 %. Consequently, 
under dynamic loading with a frequency of 10 Hz, 
damping of vertical oscillations decreases by ≈ 30 % 
for each thickness of a sample and is a qualitative 
indicator for this material.

Conclusions. The results of experimental studies 
of changes in elastic-hysteresis properties of a 
polymer composition under various operating 
conditions, as well as a generalized model of 
interaction of running parts with track superstructure, 
make it possible to effectively use the obtained data 
in a refined calculation model describing interaction 
of a railway track and rolling stock.

The effect of temperature factors on elastic-
hysteresis properties of damping materials is 
highlighted.

The obtained experimental characteristics should 
be put into the mathematical model as input 
parameters of a designed damping element of an 
over-axle box unit to reduce vibration effects in a wide 
range of ambient temperatures.
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a thickness of 14,5 mm and 10 mm.
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