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Background. Electronics and optoelectronics as 
its component are the basis of high-tech industries of 
the world industry. These include production of high-
speed telecommunications systems, safety devices, 
medical diagnostic devices, the elemental base of 
quantum systems for transmission and processing of 
information, etc. One of the priorities here is 
development of semiconductor materials operating 
on new physical and technological principles and 
analysis of the possibilities of nanotechnology for 
production of new-generation nanostructures [1].

Such a promising direction in optoelectronics 
became the work with isotopic materials. This is a 
young field of science engaged in the design of 
semiconductors using own isotopes of chemical 
elements to obtain new effects and optoelectronic 
characteristics. An example of an isotopic material 
can be a variety of graphite – graphene. To use its 
unique properties in electronics, it is necessary to 
«open the bandgap» [2, 12]. The desired effect can 
be obtained by increasing the percentage of heavy 
isotope. The opposite direction of design is isotopic 
purification of the initial material from heavy 
isotopes.

The decrease in concentration of heavy isotopes 
in the initial chemical element improves the 
optoelectronic characteristics of the semiconductor 
material, increasing primarily the speed of the 
instruments. For this, the technology of gas 
centrifugation (GCF) is used. The isotopically purified 
substance is then used to form nanostructures by 
molecular beam epitaxy (MBE) [1, 4, 5]. Releasing 
the initial chemical element from heavy isotopes can 
reduce crystal lattice defects and mechanical stresses 
between layers [1].

Objective. The objective of the authors is to 
consider new materials in optoelectronics.

Methods. The authors use general scientific and 
engineering methods, comparative analysis, 
mathematical method.

Results.
Estimation of isotopic material
The effectiveness of reducing the concentration 

of heavy isotopes in semiconductors can be assessed 
using the example of improving the properties of 
gallium arsenide when used in a photodetector (PD). 
These improvements are primarily reflected in the 
increase in the absorption coefficient α and in the 
quantum efficiency of the material η.

The isotopic composition of gallium in a crystal GaAs 
is of the following order: 60,1 % is attributed to the 
isotope 69Ga and 39,9 % – to the heavier isotope 71Ga.

The decrease in the concentration of 71Ga can be 
interpreted as a reduction in the number of defects in 
the crystal lattice, which will affect the effective mass 
of charge carriers, for example, the electron m

ef
 and 

the band gap E
g
. The possible scales of the changes 

of m
ef

 and E
g
 can be estimated from the publication 

[7], which shows the results of studies of the 
dependence of the effective electron mass and the 
band gap width on changes in the concentration of 
doping atoms in gallium arsenide single crystals. Thus, 
a decrease in the concentration of the heavy isotope 
71Ga in a gallium arsenide crystal by two orders of 
magnitude can reduce: 1) the width E

g
 – by 0,06 eV; 

2) the value of m
ef

 – by two times. This will lead mainly 
to an increase in the absorption coefficient and 
quantum efficiency.

It should be noted that the quantum efficiency η 
has the greatest influence on the optoelectronic 
characteristics of PD material.

It is known that quantum efficiency is estimated 
by the formula [8]:
η = 1–e-ad,  (1)
where α – absorption coefficient, d – thickness of a 
sample.

Absorption coefficient [9]:

gK k Eα ν= − ,  (2)

where hν – photon energy (the product of the Planck 
constant and the frequency of light). The dependence 
of the absorption coefficient on the photon energy α 
= f(hν) is directly proportional. From the graph of the 
dependence α = f(hν) for gallium arsenide [9], we can 
calculate the proportionality coefficient K, starting 
from the relation

4 1
0,8 10 1,5 1,42,K

cm
 = −   
 

 . (3)

Hence, K = 2,827•104 (cm-1 eV-1/2).
Thus, after isotope purification of gallium from 

heavy isotopes, the absorption coefficient will be:

4 4 1
2,827 10 1,5 1,36 1,058 10

cm
α  = − = ,   

 
  . (4)

The efficiency of isotopic gallium purification is to 
increase the quantum efficiency by increasing the 
absorption coefficient. For example, for a bulk crystal 
of gallium arsenide of thickness d = 10–4 cm on the 
basis of formulas (1)–(4), we obtain:
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 times. (5)

That is, the value of η after purification from heavy 
isotopes increased by 1,23 times.
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ABSTRACT
The current problems of increasing the efficiency 

of optoelectronic devices with the help of new 
materials are considered in the article. It is noted 
that the most promising direction of research is the 
design of semiconductor materials using the own 
isotopes of chemical elements. Thus, purification 
from heavy isotopes increases the speed of 

optoelectronic devices, quantum efficiency, 
sensitivity of photodetectors. The greatest effect of 
isotope purif ication can be obtained for a 
nanostructured material (superlattices). This new 
semiconductor material will create more sensitive 
instruments for night vision, solar panels, safety 
systems, medical equipment, ultra-long-range 
infrared photodetectors.
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It is known that the quantum efficiency η 
determines the sensitivity, the detectability of PD 
material and, most importantly, the magnitude of the 
photocurrent [8]. Hence, the ratio of the signal-to-
noise power at the output of PD ρ2

outpd
 before and after 

the isotope purification of the bulk crystal also 
increases by 1,23 times. This will lead to a decrease 
in the probability of an error P

err
 and an improvement 

in the reception quality of optical signals [10].
The most effective material for photodetectors 

are nanostructures. These are multiple quantum wells 
(MQW) and superlattices (SL) consisting of alternating 
layers, for example, gallium arsenide (well) and 
gallium arsenide aluminate (barriers) or silicon 
isotopes (Pic. 1) [1]. Differences between MQW and 
SL in sizes a and b (for SL a = b < 6 nm).

For quantum wells, the value of d is of the order 
of d = 10–6 cm (10 nm). Hence formula (1) for 
calculation of η is transformed into [6]:
η ≈ α

1QW
.

 
(6)

After isotopic purification, we obtain the following 
changes (increase) in quantum efficiency for gallium 
arsenide per quantum well:

4 6

4 6

1,06 10 10
1,325

0,8 10 10

−

− =
 

 

 times.

Thus, as a result of isotopic purification of the 
material in the form of MQW, η, the sensitivity of the 
photoconductivity, the detecting power and the 
photocurrent, the value of ρ2

outpd
, determining the 

reception quality of PD, will increase by 1,325 times.

Improving the quality of photo reception
Using the result obtained from isotopic purification 

of PD material on MQW, namely, an increase in the 
values of the parameter Q2 and ρ2

outpd
 (ρ2

outpd 
= 4 Q2) 

by more than 1,3 times, we calculate the error 
probability P

err
 and the anomalous error δ2

an
 [8]) 

respectively according to the formulas (7) and (8):
2

2

2
exp

42

outpd
err

outpd

P
ρ

πρ

 
= −  

 
; (7)

δ2
an 

≈ 12P
err

. (8)
Pic. 2 shows the error probability graphs for PD 

on a material with a purification P
errpur 

= f(Q) and without 
purification P

err 
= f(Q) from heavy isotopes based on 

the formula (7).
After isotopic purification of the material, the 

probability of error P
errpur

 decreases by several orders 
of magnitude.

The efficiency of purification of the material from 
heavy isotopes in numerical terms is presented in 
Table 1. It gives the values of the error probabilities 
before the isotopic purification of PD material and 
after it.

Based on the calculated error probability values 
in Table 1, it is possible to estimate how many times 
the quality of reception of optical signals will improve 
by increasing the technical (optoelectronic) 
characteristics of a semiconductor material (gallium 
arsenide) after isotopic purification (increasing 
quantum efficiency, sensitivity, noise reduction). 
Thus, for a minimum allowable value ρ2

outpd 
= 50, which 

Pic. 1. Superlattices (MQW) on silicon isotopes (а – quantum well, b –barrier).

Pic. 2. Dependence P
err 

= f(Q) for PD without purification (P
1
) and with purification (P

2
).
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provides the error probability 0,421•10–6 according 
to the formula (7), purification of the material will 
reduce the probability of error by 11,51 times. To 
calculate the possible gain m for improving the quality 
can be as follows: where K = 1,325 – coefficient of 
increase in the ratio of signal power and noise at the 
output of the photodetector (6).

The value of the gain m due to purification of the 
semiconductor material of the photodetector 
depends on the value of ρ2

outpd
 and the coefficient K.

In addition to the quantum efficiency of PD after 
purification from heavy isotopes of gallium crystals, 
other characteristics of the material also improve. It 
is known that purification from heavy silicon isotopes 
has allowed to increase speed of microprocessors 
more than twice due to reduction of the effective mass 
of electrons and increase of mobility of charge carriers 
[3]. An even greater effect due to more mobile charge 
carriers in AsGa can be expected from gallium 
arsenide.

Isotopic superlattices
The most promising material for optoelectronics 

in various fields of technology, along with MQW, are 
semiconductor superlattices (SL), which are 
characterized by splitting of energy levels and 
formation of conductivity subbands and gaps in 
quantum wells.

By changing the isotopic composition of the 
material, for example, gallium arsenide, it is possible 
to choose the location of energy subbands in the 
quantum wells and the width of the energy gaps in SL 
(Pic. 1) for design of new semiconductors. This is due 

to changes in the effective mass of the electron m
ef

 
and the width of the band gap E

g
 of the quantum well 

material.
The width of the slits and the conductivity 

subbands is determined by the initial material, and 
also by the width of the barriers and wells. When 
designing optoelectronic devices, for example, with 
a photoelectric effect at intersubband transitions, it 
is important to achieve the required width of the 
energy gap and the number of subbands in the 
quantum well. It is difficult to obtain the desired result 
only with the selection of the parameters a and b of 
wells for the selected material.

With the help of isotopic nanoengineering, the SL 
model allows the creation of new materials with 
predetermined optoelectronic characteristics [1].

As already noted, heavy isotopes can be regarded 
as crystal lattice defects that significantly affect the 
electrical, optical and mechanical properties of the 
material.

The mechanism of influence of crystal lattice 
defects on mobility of electrons can be estimated 
according to the classical theory of electrical 
conductivity. Thus, the uniformly accelerated 
motion of an electron in a crystal under the action 
of an electric field terminates in a collision with a 
crystal lattice defect [11]. In this case, the acquired 
velocity in the direction of the electric field drops 
practically to zero, then the acceleration of the 
electron again begins. The «acceleration – 
scattering» cycle is repeated again and again many 
times. The average distance traveled by an electron 
from a collision to a collision is called the mean free 
run. For silicon crystals, it is known that after 
purification from heavy isotopes 29Si, 30Si, which 
constitute about 8 % of all atoms, the mobility of 
electrons has doubled [3].

For natural gallium, which consists of two isotopes 
(69Ga – 60,1 %; 71Ga – 39,9 %), purification of the 
crystal from the isotope 71Ga can increase the electron 
mobility by more than two times. Taking into account 
the fact that gallium is lighter than silicon (the ratio of 
effective mass m

ef
 for Si and Ga is 2,84), we can 

expect a greater effect from isotopic purification. In 

Table	1
Error	probability	at	the	output	of	

photodetector	before	purification	P
err

	and	after	
isotopic	purification	P

errpur

ρ2
pd

P
err

P
errpur

50 0,142•10-6 1,54•10-8

100 1,12•10-12 1,68•10-15

200 1,08•10-23 2,8•10-29

Pic. 3. Dependences of the energy levels of SL before and after purification of gallium from heavy isotopes.
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 (9)
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addition, the number of «acceleration – scattering» 
cycles for gallium will be greater in comparison with 
silicon, and consequently, purification will be more 
effective. In the case of silicon, collisions with a heavy 
isotope occur on average every nine atoms, for 
gallium, approximately every two.

Estimation of the effect of purification from heavy 
isotopes of gallium crystals for superlattices can be 
obtained by mathematical  modeling of the 
dependence of the energy levels on the width of the 
well. Thus, the value of the effective mass as a result 
of purification from heavy isotopes of gallium can be 
reduced by two times, i. e. to make the value 0,067/
(2·m

0
). The value of the band gap after purification 

can be reduced by 0,06 eV, i. e. become 1,424–0,06 
= 1,364 eV [7].

Pic. 3 presents the results of mathematical 
modeling of distribution of energy bands for SL from 
gallium arsenide and gallium arsenide aluminate 
without purification of gallium from heavy isotopes 
(Pic. 3a) and with purification (Pic. 3b).

Calculating the width of the energy gap in the 
quantum well for the parameters a = b = 4 nm has 
shown that purification reduces the width of the first 
energy gap by 3 meV, and this can be a significant 
factor for achieving a certain long-wavelength 
photoeffect boundary, for example, in safety systems, 
devices for detection of hazardous substances, 
product quality assessment, etc.

Thus, on the basis of mathematical modeling, 
changes in the optoelectronic characteristics 
(distribution of energy bands in SL structure) after 
purification of the material from heavy isotopes of 
gallium have been proved. With the help of isotopic 
SL, it is possible to design new semiconductor 
materials for ultra-long-range infrared photodetectors 
(an atmospheric window with a wavelength of light up 
to 20 µm) that cannot be created in the usual way.

Conclusions. A change in the isotopic 
composition of the initial semiconductor affects the 
optoelectronic characteristics of the material (mobility 
of charge carriers, width of the band gap, quantum 
efficiency, etc.).

When creating isotopic materials, it is possible to 
increase or decrease the percentage of heavy 
isotopes in a substance. Thus, purification of gallium 
from heavy isotopes (gallium arsenide material of the 
photodetector) increases the signal-to-noise power 
ratio at the output of PD and reduces by several orders 
of magnitude the probability of error.

The most promising direction is creation of 
i s o t o p i c  s u p e r l a t t i c e s  ( n e w - g e n e r a t i o n 
nanostructures).  On the basis of  ISL, new 
semiconductor materials can be obtained for effective 
night vision devices (thermal imagers), solar batteries 
that capture dark photons, safety systems, medical 
equipment, etc.

In addition, isotopic purification of the original 
chemical element from heavy isotopes will allow 
creating more sensitive pixels of cameras and higher-
quality (effective) video surveillance systems, 
photodetectors of ultra-long infrared range.

The studies have proved once again the effect 
of purification on the optoelectronic characteristics 
of a bulk functional material and, correspondingly, 
on the width of energy gaps in quantum structures 
(SL).
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