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Background. The wheel set is the most loaded 
element in operation of running parts of rolling stock 
of railways, directly interacting with the rail. Due to the 
twisting motion of wheel sets in the track, their 
interaction is accompanied by appearance of forces 
and moments in the horizontal direction. The 
horizontal forces are strengthened with participation 
of the frame. Rolling friction occurs between the wheel 
and the rail. The tangential forces that are detected 
at the point of contact cause slippage of the wheels 
along the rail head.

When the tangential forces are less than the dry 
friction force, the relative sliding of the wheel along 
the rail during rolling is considered to be due to the 
elastic deformations of the wheel and rail materials 
and is called elastic sliding, or creep: F = ku/v, where 
k is the creep coefficient, v is the train speed, u is the 
slippage velocity [2].

Objective. The objective of the author is to 
consider interaction of a wheel with a rail during rolling 
and to suggest a formula of creep coefficient.

Methods. The author uses general scientific and 
engineering methods, comparative analysis, 
mathematical apparatus, theory of elasticity, 
tangential stresses, elastic sliding model.

Results. Let us consider in more detail the elastic 
sliding model. In the rolling contact, with minor 
torques, it is established that a small slippage region 
initially appears, which then increases with an 
increase in the positive moment until full sliding occurs 
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ABSTRACT
The problem of uneven wear of a wheel set is 

considered by many scientists of the world, in the 
works related to car building. New software 
complexes for mathematical modeling are being 
created, and each follows its own theory of rolling 
stock dynamics. In this article the main provisions for 
deformation and wear of a wheel along the circle of 
rolling during car movement are considered. In this 
case, the elastic sliding model is described in more 
detail. During wheel rolling and in the presence of 

torque in the contact area, there is always a gripping 
area that is located at the entrance, and an area of 
slippage at the exit. It is proved that the coefficient 
of slippage is equal to deformation in the gripping 
area. Under certain kinematic and dynamic 
conditions, a stress distribution graph is plotted in 
the contact zone. On the basis of the theory of 
tangential stresses, a displacement formula is 
obtained, which is transformed into a new formula 
for the creep coefficient, which retains the physical 
meaning of the value found.

[11]. To understand the processes taking place in the 
contact (wheel–rail), let’s take a simplified model of 
an elastic wheel (Pic. 1).

When the wheel is fully rotated, it can be seen that 
the elastic elements that come into contact with the 
surface are in a compressed state. When leaving the 
contact area, where the elements are stressed, and 
the action of normal force weakens, the balance is 
broken and the elements relax. As a consequence, 
the wheel rotates a little more. During wheel rolling 
and in the presence of torque in the contact area, 
there is always a gripping area that is located at the 
entrance. And the slippage area is at the exit. It is easy 
to determine that the slippage coefficient is equal to 
deformation in the gripping area in the contact spot:
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Now it’s time to use the known formulas from the 
theory of elasticity. Let’s suppose that the contact 
spot is a circle with radius а, as shown in Pic. 2a. In 
this zone tangential stresses act as:
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These forces lead to a displacement in the 
tangential direction:
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where G is  shear modulus, v –  circumferential velocity.
Distribution is of a kind
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in a strip of width 2a (Pic. 2b), leads to displacement 
of the surface
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where Е is  modulus of elasticity of the wheel material. 
With the help of these dependencies, it is possible to 
plot the distribution of stresses in the contact.

The distribution of normal pressure over the entire 
contact region is given by Hertz’s formula:

( )p x p= − .

In order to construct a stress distribution for a 
rolling contact, it is necessary to fulfill certain 
kinematic and dynamic conditions. According to 
Pic. 1, the material entering the contact region is 
deformed. Let us assume that the deformation in the 
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Pic. 4. Slippage curve in the presence of tangential force.

It can be seen from the graph that the total sliding in the entire contact area 

occurs when Fx = µFx. In this case, the creep coefficient (pseudo-slippage): 

k = -µa/R.

Conclusion. Thus, we have obtained a new formula for the creep coefficient, 

which preserves the physical meaning of the value itself.
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contact zone is constant. And let us also suppose that 
the condition (Coulomb’s law of friction) must be 
satisfied in the slippage zone F

тр
 = μN: τ(x) = μp(x).

Then the formula for calculating tangential 
stresses in the contact zone is:
τ(x) = τ

1
(x)+ τ

2
(x),

where τ
1
(x) –  tangential stress in the gripping area, 

τ
1
(x) –  tangential stress in the slippage area.

As follows from Pic. 3, d = a –  c.
The formula for calculating tangential stresses 

allows us to derive the displacement formulas:
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Pic. 2. Tangentially loaded contact.

Pic. 3. Distribution of tangential stresses in the contact zone.
а –  half the width of the contact zone; с –  gripping areas.

Pic. 4. Slippage curve in the presence of tangential force.
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where Е − modulus of elasticity of the wheel material. With the help of these 

dependencies, it is possible to plot the distribution of stresses in the contact.

The distribution of normal pressure over the entire contact region is given by 

Hertz’s formula:
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In order to construct a stress distribution for a rolling contact, it is necessary to 

fulfill certain kinematic and dynamic conditions. According to Pic. 1, the material 

entering the contact region is deformed. Let us assume that the deformation in the 

contact zone is constant. And suppose that the condition (Coulomb’s law of friction) 

must be satisfied in the slippage zone Fтр = μN:

τ(x)=µp(x).

Then the formula for calculating tangential stresses in the contact zone:

τ(x)= τ1(x)+ τ2(x),

where τ1(x) – tangential stress in the gripping area, τ1(x) – tangential stress in the 

slippage area. 

Pic. 3. Distribution of tangential stresses in the contact zone.

а − half the width of the contact zone; с – gripping areas.

As follows from Pic. 3, d = a − c.

The formula for calculating tangential stresses allows us to derive the 

displacement formulas:

Slippage Gripping
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And the formula for deformation transforms into:
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Substituting τ
1
 for the expression of the Coulomb 

law, we obtain τ
1 

= μp
0
.

Taking into account the fact that the deformation 
in gripping area is constant, we have the formula:

02xu p d

x aE

µ∂
= −

∂
.

The total transverse force in the contact region is 
calculated by equation
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By transforming the expression d = a –  c we obtain 
d/a = 1 –  c/a and, substituting it into the expression 
for the total transverse force, we find the unknown 
distance d:

x
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F
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Using the formula for deformation in the gripping 
area, we derive the creep coefficient:
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= ⋅ , where R is  wheel radius.

We get the final creep formula for the railway 
wheel:
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This dependence, as shown in the graph of Pic. 4, 
corresponds to the slippage curve.

It can be seen from the graph that the total sliding 
in the entire contact area occurs when F

x 
= μF

x
. In this 

case, the creep coefficient (pseudo-slippage):
k = -μa/R.
Conclusion. Thus, we have obtained a new 

formula for the creep coefficient, which preserves the 
physical meaning of the value itself.
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