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Background. The task of identifying potentially 
dangerous persons at transport facilities is carried 
out according to data obtained with the help of 
external surveillance cameras. Developers of video 
surveillance systems, in particular, offer complexes 
using biometric identif ication (for example, 
NeoFace system, R7 glasses) [1, 2], as well as 
recognition of emotions in facial expressions (for 
example, DeepFace) [3–6]. The main disadvantage 
of this type of system is that information about an 
intruder may not be contained in the existing 
database.

At the disposal of analysts there are algorithms 
that allow both to track things lost on platforms [7], 
and to identify objects along the train route [8], as 
well as to detect the occurrence of smoke [9], 
however, in the overwhelming majority of cases, 
data from CCTV cameras are used only for formation 
of archives of video recordings, and the possibilities 
of fixed information from remote objects are 
practically not used. This is due primarily to 
t e c h n i c a l  d i f f i c u l t i e s  a s s o c i a t e d  w i t h  t h e 
characteristics of intelligent video surveillance 
systems, namely, sensitivity of the analyzer to the 
conditions of illumination, presence of vibration, 
which is unavoidable when used in railway transport, 
and the like.

Separately, it is necessary to distinguish the 
task of ensuring safety on the aprons of low-loaded 
stations of commuter traffic, especially at night. 
However, in case of an emergency situation, a 
person in need may not get help from someone 
because of the absence of other passengers. In this 
connection, the urgency of using technical means 
that are able to send an alert signal to the station 
duty officer in an automated mode is increasing. 
Within the framework of this article, the question of 
such a system for recognizing human movements 
through the records of CCTV cameras and revealing 
episodes of its falls in the risk zone is considered.

Objective. The objective of the authors is to 
consider intelligent video analysis of dangerous 
situations.

Methods. The authors use general scientific 
methods, comparativ e analysis,  ev aluation 
approach.

Results.
Experimental records
In most works to identify episodes of falls using 

video image analysis, the ev aluation of the 
effectiveness of the proposed classification 

algorithms proves to be artificially overstated due 
to the limitations of the database of video records 
used as testing and training samples. In this case, 
the records were obtained for the same conditions 
of the situation (most often in the laboratory, rather 
than close to reality) in the presence of uniform 
illumination of the analyzed area of space. In the 
role of subjects performing, among other things, 
artifacts of movement such as «fall», the same 
person appears, with the falls being monotonous, 
both in the form of movement itself and the actions 
preceding it, and also by the angle at which the 
«executor» is located relative to the camera at the 
time of the fall. In addition, it should be noted that 
almost always falls are performed on a cushioning 
mat, which has a contrasting color with the clothes 
of the subject.

In our analysis, an open database of video 
recordings of  the Electronics and Imaging 
Laboratory of the National Center for Scientific 
Research in Chalon-sur-Son was used [12]. Its 
merits include the following factors:

1. Video images are obtained for different 
environmental conditions.

2. There is uneven illumination of the scene of 
the experiment, including a situation where, due to 
the limited dynamic range of the camera and the 
presence in the frame of a high brightness region 
(window area), the video image of the person had 
a small contrast compared to the situation.

3.  Four subjects (3 men and 1 woman) 
participated in the experiments.

4. Falls of bodies occurred at different viewing 
angles, both from standing position and from sitting 
position.

5. Falls were carried out on a specially prepared 
cushioning base and directly on the floor.

The authors analyzed 108 records from the 
database, 84 of which contained a single episode 
of the fall. For each record, the operator has visually 
determined the frame numbers of the beginning 
and end of the episode. The duration of artifacts of 
the «fall» type was 22 ± 9 frames. Considering that 
the video recordings are made for a sampling 
frequency of 25 or 30 frames per second, we get 
the duration of the artifact equal to 0,7 ± 0,3 s.

Algorithm of video processing
The task of classification in computer vision is 

divided into two sub-tasks: image preprocessing 
and classification. The pre-processing phase is 
necessary to convert the visual data into a form that 
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ABSTRACT
The article is devoted to development of a system 

for the intelligent analysis of video recordings of 
external surveillance cameras, which makes it possible 
to identify dangerous situations at railway facilities 
using the example of detection of falls in the track area. 
A method of preprocessing a video for the purpose of 
forming a feature space based on the use of 
background subtraction using the Gaussian mixture 

method, followed by tracking the movement of a 
person with the help of the Kalman filter and 
deformation of the shape of the mobile object as a 
result of applying the procrustean analysis is 
proposed. The selection of the optimal composition 
of the feature space and additional heuristics providing 
the isolation of episodes of falls from video recording 
with an average quality of the Cohen’s kappa 0,62 is 
compared with the visual analysis by the operator. 
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is acceptable when using classification algorithms. 
As a result, a space of attributes is formed. In this 
case, it is required not only to form the space of 
features of the image, but also to exclude non-
informational ones from consideration, while 
retaining all the attributes essential for the solution 
of the task. At the stage of classification, the 
classifier is trained, and as the training and testing 
sample, the evaluation of attributes obtained during 
the preprocessing of the experimental video 
sequence is used.

Preprocessing of data
1) Selecting an object against the background 

of the situation. For each frame in the image, a 
gradual subtraction of the background was 
performed using the built-in Matlab functional that 
implements the Gaussian mixture method (the 
training was conducted in 20 frames). Then the 
segmentation of the image was carried out, as a 
result of which image points that were not a 
background were combined into blocks if their total 
number in a single block was not less than the 
threshold value. When analyzing the experimental 
data, an empirically selected threshold value equal 
to 50 pixels for a frame size of 320 by 240 is used. 

In case of further use of the proposed algorithm 
for analyzing data having a different spatial 
resolution, this parameter can be changed 
proportionally.

2) Tracking the position in the frame of the 
moving object. As soon as the segmentation results 
showed a mobile object in the frame, a Kalman filter 
was created, which was used to track target 
movements. In our work, a filter was implemented 
using the Matlab Сonfigure Kalman Filter function. 
Variability of the tracking speed of the tracking 
object is taken into account with the help of an 
additional filter parameter (Motion Noise) [13].

When analyzing a video image, two cases of 
using the Kalman filter are possible:

– the mobile object is detected on the frame: 
then the filter predicts the position of the object in 
the frame of the video sequence and uses the data 
on the new position of the object to correct the 
results of the object selected by filtering the position 
of the object;

– the mobile object is not detected: then the 
position of the detected object in the frame obtained 
by means of the filter is formed exclusively on the 
basis of the analysis data of the previous frames.

Table 1
Error matrix for feature space P1

The result of classification

Non-fall Fall

True class Non-fall 19 468 871

Fall 975 556

Cohen’s kappa 0,33

Accuracy 0,91

Pic. 1. Dependencies of Cohen’s kappa and the accuracy on the width of the analyzed window.

Table 1
Error matrix for feature space P1

The result of classification

Non-fall Fall

True class Non-fall 19 468 871
Fall 975 556

Cohen’s kappa 0,33
Accuracy 0,91

Let’s consider how the use of the supplemented feature space P2 affects the 

efficiency of classification. Pic. 1 shows the data on how Cohen’s kappa size changes 

and the accuracy of the classification in the case of using the augmented space of 

features P2 with the window width n varying from 2 to 30 frames. The upper limit of 

the window width range n is selected based on the maximum duration of the incident 

episode of 1 s, which corresponds to 30 frames at a sampling rate of 30 frames per 

second.

Pic. 1. Dependencies of Cohen’s kappa and the accuracy 

on the width of the analyzed window.
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3) Analysis of the deformation of the shape of a 
mobile object. As a context descriptor of the form, 
in contrast to [14], where all the boundary points of 
the object were analyzed, only mobile characteristic 
boundary points were taken. For them, a procrust 
analysis of the form [15] was performed using the 
following algorithm.

At each frame of the video sequence k for the 
characteristic edge points of the human silhouette, 
a complex vector was defined:

Z = [z
1
, z

2
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k
], z
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 = x

j
 + iy

j
,

where i – ​imaginary unit; x
j
 and y

i
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the j-th point of the image.
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C
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formed by multiplying the coordinate vector Z by 
the centering matrix C:
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The calculated distance (the procruste metric) 
for sequences of characteristic points of two 
consecutive frames is an estimate sensitive to 
significant deformations of the shape of the object, 
for example, due to a fall.

Table 2
Error matrix for feature space P2

The result of classification

Non-fall Fall

True class Non-fall 19 811 528

Fall 620 911

Cohen’s kappa 0,58

Accuracy 0,95

Pic. 2. Comparison of the results of video recording processing by the operator and the classifier.

It follows from Pic. 1, when the feature space P1 is added to the feature space 

P2, the Cohen’s kappa grows approximately twice: from 0,31 to 0,58. In this case, the 

best estimates of Cohen’s kappa and the accuracy correspond to the width of the 

analyzed window equal to 16 frames. The error matrix and the classification quality 

estimates for this case are shown in Table 2.

Table 2
Error matrix for feature space P2

The result of classification
Non-fall Fall

True class Non-fall 19 811 528
Fall 620 911

Cohen’s kappa 0,58
Accuracy 0,95

A visual comparison of the results of using the classifier and markup of video 

recording by the operator, shown in Pic. 2, shows that the relatively low value of 

Cohen’s kappa due to the «fragmentation» of classification results.

Pic. 2. Comparison of the results of video recording processing 

by the operator and the classifier.
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Table 3
Error matrix for feature space P2 with the use of additional heuristics

The result of classification

Non-fall Fall

True class Non-fall 19 845 494

Fall 559 972

Cohen’s kappa 0,62

Accuracy 0,95
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Characteristics extraction
After completion of the pre-processing for each 

of the frames of the video sequence, the following 
set of parameters was evaluated, forming the 
feature space (P1):

1) estimate of the distance D(v, w);
2) coordinates of the center of gravity of the 

image area corresponding to the mobile object;
3) the area of the image area corresponding to 

the mobile object;
4) the speedy of the center of gravity of the 

image region corresponding to the mobile object, 
along the x and y axes for two consecutive frames.

The choice of these characteristics is due to 
the analysis of scientific literature on this topic [11, 
14, 15].

The space of features P1 in the course of the 
work was supplemented by a set of characteristics 
characterizing the speed of movement along the 
axis x and y of the center of gravity of the 
corresponding area of the image in the window by 
the duration n of the frames. As a result, augmented 
space of features (P2) was formed.

Selecting the composition of a vector
The analyzed data array was said to contain 108 

video recordings (lasting from 20 seconds to 1 
minute), in 84 of which there was a single episode 
of the fall. Each frame of the video recording on the 
basis of visual analysis by the operator was referred 
to the class of «fall» or «non-fall». The sample of the 
experimental data is divided into the training data 
(used to train the classifier and the selection of the 
optimal composition of the feature space) and the 
testing (used with the final rating of the classifier’s 
effectiveness). The training included 75 % of the 
video recordings (65610), the remaining 25 % 
(21870 frames) comprised a testing sample.

We used a classifier based on a tree of solutions 
from the Matlab machine learning library. To assess 

the classification error, a cross-validation method 
was applied to k = 10 blocks.

As a measure of the quality of the classification, 
it is offered to use accuracy, as well as Cohen’s 
kappa (the measure of inter-expert consent), since 
the sample is unbalanced. Note that the sample is 
called unbalanced if there is an imbalance in the 
classes, namely: they are presented unevenly. For 
example, in our case, less than 10 % of the sample 
corresponds to fall artifacts.

For the feature space P1, the results of applying 
the classifier to the test sample are shown in 
Table 1. The values in the cells of the error matrix 
correspond to the number of frames correctly or 
erroneously classified by the proposed algorithm.

Let’s consider how the use of the supplemented 
feature space P2 affects the eff ic iency of 
classification. Pic. 1 shows the data on how Cohen’s 
kappa size changes and the accuracy of the 
classification in the case of using the augmented 
space of features P2 with the window width n varying 
from 2 to 30 frames. The upper limit of the window 
width range n is selected based on the maximum 
duration of the incident episode of 1 s, which 
corresponds to 30 frames at a sampling rate of 30 
frames per second.

It follows from Pic. 1, when the feature space 
P1 is added to the feature space P2, the Cohen’s 
kappa grows approximately twice: from 0,31 to 
0,58. In this case, the best estimates of Cohen’s 
kappa and the accuracy correspond to the width of 
the analyzed window equal to 16 frames. The error 
matrix and the classification quality estimates for 
this case are shown in Table 2.

A visual comparison of the results of using the 
classifier and markup of video recording by the 
operator, shown in Pic. 2, shows that the relatively 
l o w  v a l u e  o f  C o h e n ’ s  k a p p a  d u e  t o  t h e 
«fragmentation» of classification results.

Pic. 3. Dependence of Cohen’s kappa value on heuristic parameters.

In order to improve accuracy, it was offered to use additional rules (heuristics) 

aimed at combining frames classified as falls into a single fragment of the record if 

they are located at no more than m frames from each other. Also, the parameter t,

corresponding to the minimum duration of the fall episode, was introduced.

Varying the values of m in the range from 1 to 30 frames and t in the range 

from 0 to 15 frames, an estimation of the dependence of Cohen’s kappa value for the 

training sample on these parameters was made.

Pic. 3. Dependence of Cohen’s kappa value on heuristic parameters.

It follows from Pic. 3, the maximum value of Cohen’s kappa is reached at 

m = 10 frames and t = 2 frames. Table 3 shows the error matrix of classification 

results using the proposed additional heuristics for the obtained optimal parameter 

values.
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In order to improve accuracy, it was offered to 
use additional rules (heuristics) aimed at combining 
frames classified as falls into a single fragment of the 
record if they are located at no more than m frames 
from each other. Also, the parameter t, corresponding 
to the minimum duration of the fall episode, was 
introduced.

Varying the values of m in the range from 1 to 30 
frames and t in the range from 0 to 15 frames, an 
estimation of the dependence of Cohen’s kappa 
value for the training sample on these parameters 
was made.

It follows from Pic. 3, the maximum value of 
Cohen’s kappa is reached at m = 10 frames and t = 2 
frames. Table 3 shows the error matrix of classification 
results using the proposed additional heuristics for 
the obtained optimal parameter values.

Thus, the use as feature space P2 for the window 
width n = 16 and additional heuristics allows to 
achieve the accuracy of the frame-by-frame 
classification of episodes of falls from video 
recording with Cohen’s kappa value of 0,62.

Conclusion. The method of intellectual analysis 
of video recordings of external surveillance cameras 
is proposed, which makes it possible to identify 
situations that pose a danger to life and health of 
people in railway transport by the example of 
identifying episodes of falls. An algorithm is 
developed for preprocessing a video for the purpose 
of forming a feature space based on the use of 
background subtraction by the Gaussian mixture 
method, followed by tracking the movement of a 
person with the help of the Kalman filter and 
deformation of the shape of the mobile object as a 
result of using the procrustean shape analysis. The 
proposed tree-based classification method was 
tested on a database of 108 video records, 84 of 
which contained a single episode of the fall.

The conducted comparative study of several sets 
of characteristics allowed to substantiate the choice 
of the optimal set of characteristics and additional 
heuristics that ensure the allocation of episodes of 
falls on the video record with an average quality of 
the Cohen’s kappa 0,62.

In the future it is planned to expand the 
experimental sample and add to the classifier the 
possibility of recognizing people who are in a state 
of alcoholic or narcotic intoxication by video 
recording, according to the peculiarities of their gait.
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