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abSTRacT
Problems relating to density distribution of 

estimated probability are solved on the basis 
of  exist ing theoret ical  and methodological 
approaches to the calculation of confidence limits of 
measurement error. Attention is paid to the diversity 
of actual occurring distributions, including normal, 
trapezoidal, exponential Laplace distribution, 
the t-distribution, and so on. Particular emphasis 
of the authors is placed on the use of a method 
based on the simulation of arrays of numbers with 
a given distribution in the mathematical apparatus 
for calculating the confidence level. The simulation 
results with comments are given in seven tables that 
allow comparing values and justifying advantages 
and disadvantages of each type of distribution 
using the criterion of confidence in end values of 
measurements.

EngliSH SummaRY
background. To calculate the confidence limits 

of measurement errors [1–3 et al.] it is necessary to 
know the probability density distribution w (x), which in 
most cases is supposed to be an even function. Given 
this assumption, the confidence limits are symmetric 
+∆

дов 
and if given confidence level is P

до
, then  ∆

дов
 is 

found from the condition

( ) .
дов

дов

довw x dx Р
∆

−∆

=∫
 (1)

Most often the probability density of an error is 
assumed to be normal:

2 22( ) 2 ,хw x e σ pσ−=   (2)

where σ is a mean-square deviation (hereinafter- 
MSD). This notation will be used for MSD of other 
distributions.

Despite widespread use of normal distribution, it 
does not cover the whole variety of really occurring 
distributions. In particular, in [4] for calculation 
of uncertainty it is offered to use a trapezoidal 
distribution, extreme special cases of which are 
rectangular (uniform) and triangular distributions.

Rectangular distribution is given by

1 2 | | ;
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b x b
w x
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For this distribution 3 0,58 .b bσ = ≈

Triangular distribution is given by
( )1 | | | | ;

( )
0 | | .

x b b x b
w x

x b

 − ≤= 
 >

 (4)

In this case 6 0,41 .b bσ = ≈

The normal distribution is different from zero on 
the whole number axis. Trapezoidal, rectangular and 
triangular distributions, in contrast to normal one are 
finite, they differ from zero on a finite interval. In this 
case, near the maximum, which is achievable with x = 
0, the normal distribution is more flat than triangular, 
and less flat than rectangular.

Non-finite distribution, which is less flat and 
decreases with increasing modulus of the argument 
slower than normal, will be two-sided exponential 
distribution (Laplace distribution)

| |( ) 2 ,х mw x e m−=   (5)

for which 2 1,41 .т тσ = ≈

An example of nonfinite distribution with a flat 
top, which decreases with increasing modulus of the 
argument faster than normal:

4 4 4 4

( ) 2 (0,25) 0,552 .х m х mw x e m e m− −= Γ ≈   (6)

In this case (0,75) (0,25) 0,58 ,т тσ = Γ Γ ≈  where 

Γ(.) is a complete gamma function. Below this 
distribution will be called a rapidly decreasing 
distribution.

Objective. The objective of the authors is to 
investigate particular aspects of confidence limits of 
measurements, approaches to their measurement 
and measurement error distributions.

methods. The authors use mathematical 
calculations, simulation and analysis.

Results. Substituting (2) into (1) leads to the 
known rules of two sigma and two and a half sigma 
at confidence levels P = 0,95 and 0,99, respectively. 
In [5] it is noted that the use of statistical methods 
without assumptions under which they are derived, 
can lead to significant errors. This, in particular, 
applies to the said rules, which under other probability 
density distributions are unfair.

Table 1 lists MSD relating to all enlisted 
distributions. It shows clearly that for more slowly 
decreasing Laplace distribution ∆

дов 
/σ is higher and 

with increasing confidence level is growing more 
significantly than for a normal distribution. For a rapidly 
decreasing distribution the situation is reversed. 
For finite distributions ∆

дов
/σ MSD is smaller than for 

normal, and with an increase in the confidence level 
it grows to a lesser extent. For this reason, in case 
of finite distributions ∆

дов
=b can be set for almost all 

confidence levels.
If the law of error distribution and its parameters 

are known, the calculation of confidence limits for a 
single measurement in accordance with (1) is quite 
simple. The situation is more complex for multiple 
measurements. Thus it is necessary to consider two 
options:

– MSD of errors of single observations is known 
a priori;

– MSD of an error of a single observation is 
determined by the results of multiple measurements.

Let us consider the first option. As a result N of 
multiple equal measurements arithmetic mean is 
taken. The error of this result is equal to arithmetic 
mean of the errors of single observations

. .
1

1
.

N

ср ар j
jN =

∆ = ∆∑   (7)

In the assumption of independence of single 
observ ation errors . .ср ар Nσ σ= in case of a 

normal distribution the error of arithmetic mean 
will also be normally distributed. Therefore values 
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o f  t h e  r a t i o  .дов ср ар дов Nσ σ∆ =∆ e x p e c t e d l y 

coincide with values, given in Table 1 for the normal 
distribution.

For other distributions with unbounded increase 
in the number of observations distribution of the 
arithmetic mean according to the central limit theorem 
will seek to normal. However, at finite N it will differ 
from the error distribution of a single observation, and 
from the normal distribution. This distribution can be 
found by rather cumbersome calculations.

We used a simpler method, based on the simulation 
of arrays of numbers with given distributions.

Many software packages (e. g., Excel, Mathcad) 
enable to create random numbers with uniform 
and some other distributions. Using nonlinear 
transformation of uniformly distributed random value, 
it is possible to obtain random variables with any 
desired distribution.

In nonlinear monotonic transformation of a 
random variable ν with a probability density wν (y) 
the result of the transformation ξ=f (ν) will have a 
probability density wξ (x), defined by the relation

( )
( ) ( ).

df y
w x w y

dyξ ν=   (8)

With a uniform distribution of the random variable 
ν in the interval [-0,5; 0,5] wν (y) =1 and for generating 
a random variable with a triangular distribution (4) 
according to (8) it is necessary to use a nonlinear 
transformation

( )1 1 2 .bξ ν= − −

For formation of a random variable with Laplace 
distribution (5), we can use the conversion

ξ=mln (1–2ν).
For the distribution (6), condition (8) leads to the 

equation

4
/

.
m

ze dz y
ξ

−

−∞

=∫
The authors failed to obtain an exact solution 

of this equation. Therefore, the authors used an 
approximate power series expansion that provides 
acceptable accuracy:
ξ=m (3,118ν+6,734ν 5+52,57ν 9+489,5ν 13+32770ν 17).

For each summand in (7) 1000 values were 
formed  , and on the results of the processing of the 
a r i t h m e t i c  m e a n  v a l u e s  o f  t h e  r a t i o 

. .дов ср ар дов Nσ σ∆ =∆ were obtained. Results of the 

simulation for distributions (3) – (6) are shown in 
Table 2.

Table 1
Distribution Confidence	level	Р

дов

0,95 0,98 0,99 0,997

Normal 1,96 2,32 2,57 3,00

Uniform 1,69 1,72 1,72 1,73

Triangular 1,90 2,10 2,20 2,32

Laplace 2,12 2,77 3,26 4,11

Rapidly	decreasing 1,80 2,02 2,15 2,34

Table 2
P

дов
N

1 2 3 5 10 20 30

Uniform	distribution

0,95 1,65 1,90 1,93 1,93 1,96 1,95 1,93

0,98 1,70 2,08 2,21 2,27 2,27 2,27 2,26

0,99 1,71 2,18 2,35 2,49 2,52 2,53 2,48

0,997 1,72 0 2,572,3 2,78 2,87 2,79 2,76

Triangular	distribution

0,95 1,86 1,96 1,93 1,90 1,98 1,94 1,92

0,98 2,10 2,24 2,24 2,22 2,35 2,25 2,36

0,99 2,18 2,40 2,49 2,45 2,53 2,44 2,60

0,997 2,32 2,64 2,68 2,78 2,82 2,83 2,98

Laplace	distribution

0,95 2,13 2,02 1,98 1,94 1,94 1,92 1,90

0,98 2,75 2,50 2,48 2,42 2,39 2,31 2,28

0,99 3,23 2,79 2,74 2,76 2,57 2,51 2,47

0,997 3,85 3,32 3,27 3,16 3,07 3,03 2,96

A	rapidly	decreasing	distribution

0,95 1,85 1,91 1,95 1,94 1,97 1,94 1,93

0,98 2,10 2,31 2,42 2,54 2,53 2,55 2,51

0,95 2,03 2,17 2,24 2,28 2,27 2,29 2,25

0,997 2,15 2,56 2,69 2,80 2,90 2,86 2,86
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At N=1 confidence limits coincide with values   
given in Table 1, significantly different for different 
distributions. When N increases due to the 
normalization of the distribution of the arithmetic 
mean this difference reduces. At N=30 values   
practically coincide with the confidence limits for a 
normal distribution.

When MSD of an error in the calculation of 
confidence limits is unknown, the experimentally 
obtained estimate is used

2

1

1
,

N

j
j

S
N =

= ∆∑   (9)

whose square distribution coincides in form with 
the distribution of chi-square with N degrees of 
freedom.

Taking into account (9), we assume that in the 
error assessment the actual value of the measured 
value is known. Otherwise, if ∆

j
 is deviation of the 

arithmetic mean, N in the denominator of the formula 
(9) is replaced by N–1and the number of degrees of 
freedom reduces by one. Usually, there are two cases.

The value S can be used to calculate the 
confidence limits of an error of a single observation 
and the arithmetic mean. Under the assumption 
of normality and independence of errors of single 
observations the calculation is based on the 
t-distribution.

T-distribution with N degrees of freedom implies 

a random variable 0 ,t Nξ ν= where ξ
0
 is normally 

distributed with zero mathematical expectation and 
unit variance, and the value ν, which is independent 

from it, has chi-square distribution with N degrees of 
freedom. Given the definition of a random variable 
with a chi-square distribution, we can write

2
0

1

,
N

i
i

t Nξ ξ
=

= ∑   (10)

where independent normal random variables ξ
0,

 ξ
1,

…, 
ξ

N 
have zero mathematical expectations and equal 

(optional unit) MSDs.
T-distribution implies a rather simple analytical 

expression, although for its practical application 
tables are commonly used. And it is important to note 
that this distribution as normal is defined on the whole 
number axis.

With account of (9) and (10) for a normally 
distributed error of a single observation, not used 
in the calculation of S, the ratio ∆/S will have a 
t-distribution. Accordingly, Table 3 shows values 
∆

дов
/S for some values of a confidence level and the 

number of degrees of freedom.
For distributions of errors, which differ from 

normal, according to Table 4 values ∆
дов

/S become 
mentioned, obtained from the results of simulated 
options (3) – (6).

The table shows that the difference between the 
distribution of a single observation from a normal one 
rather significantly influences the confidence limits of 
a single observation. The most significant differences 
appear for the uniform distribution with a small number of 
degrees of freedom (due to  distribution of the numerator 
in the formula (10)) and the Laplace distribution (due 
to a slower decrease of the probability density of the 
numerator in (10)). For large N, the confidence limits in 

Table 3
Р

дов
Number	of	freedom	degrees	N

2 3 5 10 20 30

0,95 4,3 3,18 2,57 2,23 2,09 2,04

0,98 6,96 4,54 3,36 2,76 2,53 2,46

0,99 9,92 5,84 4,03 3,17 2,85 2,75

Table 4
Р

дов
Number	of	freedom	degrees	N

2 3 5 10 20 30

Uniform	distribution

0,95 3,27 2,41 1,97 1,80 1,71 1,64

0,98 5,39 3,23 2,50 2,01 1,89 1,76

0,99 7,70 4,49 2,85 2,17 1,98 1,85

Triangular	distribution

0,95 4,45 3,11 2,38 2,18 2,03 1,88

0,98 7,05 4,60 3,06 2,54 2,33 2,12

0,99 9,79 5,86 3,60 2,76 2,50 2,22

Laplace	distribution

0,95 6,34 4,32 3,37 2,67 2,32 2,12

0,98 11,89 7,04 5,09 3,97 3,48 2,90

0,99 16,43 9,49 6,43 4,61 4,22 3,30

A	rapidly	decreasing	distribution

0,95 3,70 2,70 2,27 2,02 1,90 1,81

0,98 6,12 3,73 2,85 2,42 2,25 2,03

0,99 8,52 4,96 3,39 2,58 2,34 2,19
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Table 4 are close to the values   in Table 1. It occurs due 
to the fact that with increasing N the spread of S, which 
stands in the denominator (10), decreases, and the type 
of the distribution of the ratio t is determined mainly by 
the type of numerator distribution, i. e. by the type of an 
error distribution of a single observation.

Other material breach of the applicability of 
the t-distribution is the dependence of the random 
variable in the numerator (10) from random variables 
in the denominator. If as ξ

0 
we take one of the values 

used in the calculation of S (for example, ξ
1
), the value 

of t is limited in modulus

2
1

1

| | | | ,
N

i
i

t N Nξ ξ
=

= ≤∑   (11)

and its distribution in contrast to t-distribution will be 
finite, specified in the interval N±  for any error 

distributions of single observations. Therefore, even 
for a normal distribution of errors the use of 
confidence limits of t-distribution for calculation will 
not be justified.

Table 5 shows values ∆
дов

/S, obtained by the 
simulation results for the distributions (2) – (6), when 
we take ξ

1
 as ξ

0
.

Table 5
Р

дов
Number	of	freedom	degrees	N

2 3 5 10 20 30

Normal	distribution

0,95 1,411 1,63 1,81 1,86 1,91 1,93

0,98 1,414 1,70 1,97 2,05 2,23 2,25

0,99 1,414 1,72 2,08 2,15 2,38 2,44

Uniform	distribution

0,95 1,407 1,58 1,64 1,64 1,66 1,64

0,98 1,413 1,67 1,80 1,78 1,77 1,74

0,99 1,414 1,70 1,89 1,90 1,82 1,81

Triangular	distribution

0,95 1,410 1,64 1,77 1,82 1,84 1,84

0,98 1,413 1,69 1,91 2,04 2,04 2,06

0,99 1,414 1,72 2,01 2,21 2,22 2,16

Laplace	distribution

0,95 1,412 1,69 1,98 2,14 2,18 2,18

0,98 1,414 1,72 2,12 2,45 2,59 2,67

0,99 1,414 1,72 2,15 2,65 2,86 2,99

A	rapidly	decreasing	distribution

0,95 1,408 1,61 1,73 1,77 1,81 1,82

0,98 1,413 1,68 1,89 1,95 1,98 1,98

0,99 1,414 1,70 1,96 2,08 2,07 2,08

Table 6
Р

дов
Number	of	freedom	degrees	N

2 3 5 10 20 30

Uniform	distribution

0,95 3,35 2,54 2,14 2,06 1,98 1,93

0,98 5,58 3,44 2,72 2,50 2,39 2,27

0,99 7,57 4,62 3,25 2,79 2,58 2,44

Triangular	distribution

0,95 4,00 3,04 2,34 2,21 2,01 1,93

0,98 7,12 4,14 2,94 2,60 2,42 2,35

0,99 10,51 5,50 3,35 2,84 2,79 2,74

Laplace	distribution

0,95 6,65 4,39 3,06 2,43 2,27 2,27

0,98 11,44 6,33 4,19 3,43 2,79 2,76

0,99 17,49 8,71 5,06 4,10 3,21 3,13

A	rapidly	decreasing	distribution

0,95 3,70 2,77 2,24 2,23 2,04 2,05

0,98 6,34 3,86 2,87 2,91 2,43 2,41

0,99 8,42 5,15 3,52 3,38 2,66 2,65
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In this case, there are significantly lower values   
of the confidence limits, especially for small N, 
compared with the data in Tables 3 and 4. Obviously, 
this understatement occurs not due to more accurate 
calculation of a confidence limit, but due to improper 
use of (10). Hence we talk about the validity of the well-
known rule: the detection of gross errors during MSD 
estimation the verifiable observation, having a maximum 
deviation from the mean one, should not be taken into 
account. However, in assessing the confidence limits for 
errors of single observations, which are not considered 
as failures, improper use of the relation (10) sometimes 
takes place.

When calculating the confidence limits of the 
arithmetic mean to ensure the independence of the 
numerator and denominator of the expression (10) 
the arithmetic mean and MSD estimation should be 
calculated from different arrays, the number of single 
observations of which may be different. In practice, 
this condition is rarely taken into account, and the 
requirement for independence of numerator and 
denominator by using the t-distribution is violated.

Let the symbol N be the number of observations, 
on which S is calculated, then through N

ср.ар 
we denote 

the number of observations, on which the arithmetic 
mean is calculated.

Since the variance of the arithmetic mean is N
ср.

ар
 times smaller than the variance of averaged 

results, when it is substituted in (10) as ξ
0
, a factor 

..ср арN  is introduced. With account of this, in a 

normal distribution of errors of observation and 

calculation of the arithmetic mean and S for different 
arrays of values .дов ср арN S∆  at a given confidence 

level coincides with the values   given in Table 3 and 
the number of degrees of freedom is still equal to N.

In Table 6 for N
ср.ар

=N values of the ratio 
дов N S∆  are given for distributions (3) – (6) in 

calculating the arithmetic mean and MSD for 
different independent arrays.

The results obtained are different from the values 
given in Table 3. As for the values in Tables 1, 2 
and 4, the most significant differences relate to the 
Laplace distribution, because of its slow decrease 
with increasing modulus of the argument. Similarly 
to Table 2, with increasing N due to the normalization 
of the numerator, reduction in denominator spread 
in (10), and the normalization of its square, these 
differences decrease.

Similarly to the confidence limits of errors of 
single observations dependence of numerator and 
denominator in (10) will substantially understate 
estimates of the confidence limits of the arithmetic 
mean by changing the distribution of the variable t.

Without loss of generality, we can assume that 
the arithmetic mean is determined by the values of 
the first N

ср.ар
 values from N values, on which MSD 

is estimated. Then from (10) we obtain
.

2
. .

1 1

.
ср арN N

ср ар i ср ар i
i i

t N N Nξ ξ
= =

= ∑ ∑
Since

Table 7
Р

дов
The	number	of	freedom	degrees	N

2 3 5 10 20 30

Normal	distribution

0,95 1,410 1,70 1,82 1,95 2,01 2,00

0,98 1,414 1,72 1,97 2,20 2,29 2,30

0,99 1,414 1,73 2,03 2,36 2,50 2,49

Uniform	distribution

0,95 1,413 1,69 1,90 1,91 1,92 1,90

0,98 1,414 1,72 2,08 2,24 2,22 2,26

0,99 1,414 1,73 2,13 2,38 2,47 2,51

Triangular	distribution

0,95 1,410 1,63 1,80 1,92 1,90 1,93

0,98 1,413 1,69 1,96 2,18 2,24 2,33

0,99 1,414 1,71 2,04 2,38 2,44 2,59

Laplace	distribution

0,95 1,408 1,62 1,76 1,84 1,90 1,89

0,98 1,413 1,68 1,92 2,09 2,15 2,29

0,99 1,414 1,71 2,00 2,24 2,32 2,46

A	rapidly	decreasing	distribution

0,95 1,408 1,62 1,76 1,84 1,90 1,89

0,98 1,413 1,68 1,92 2,09 2,15 2,29

0,99 1,414 1,71 2,00 2,24 2,32 2,46
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.
2

.
1 1

,
cp apN N

i i cp ap
i i

Nξ ξ
= =

≤∑ ∑

we come to the condition | | ,t N≤  which coincides 

with the inequation (11).
Thus, for the arithmetic mean, as well as for a 

single observation, we came to the finite distribution 
of t on the same interval ,N± although the type of 

the distribution becomes different. This conclusion 
is fair for both finite and nonfinite distributions w (ξ), 
including normal.

In Table 7 for N
ср.ар

=N values of the ratio 
дов N S∆  are given with respect to the distributions 

under consideration in the calculation of the 
arithmetic mean and MSD for a single array.

The values given in this table are significantly 
lower than the values   in Tables 3 and 6. For a small 
number of observations, they differ by several 
times. The dependence of these results on the 
confidence level and the number of observations and 
their absolute values are close to those in Table 5. 
However, there with larger N value, the influence of 
the shape of the distribution of a single observation 
is more pronounced.

Once again, we note that if at the detection 
of gross errors the dependence of the numerator 
and denominator in (10) is usually eliminated, 
then in estimating the confidence limits for results 
of multiple measurements, the numerator and 
denominator in (10) are in most cases calculated by 
the same data. This leads to a significantly erroneous 
underestimation of absolute values of the confidence 
limits even when using the t-distribution for a normal 
distribution of errors of single observations.

Then it is necessary to briefly discuss the 
evaluation of the reliability of the simulation results. 
We will denote through Z values given in Tables 2, 
4–7. In each case, they represent the confidence 
limits of a relationship, which allows obtaining 
the measurement error. Z value is a function ψ 
of the confidence level. The form of this function 
is determined by the form of the distribution of 
observational errors, the number of observations 
and the kind of ratio that is used in the calculation 
of the confidence limits. In principle, it can be 

determined, but its analytical expression requires 
rather complicated transformations.

When modeling Z* and *
довР  assessments are 

investigated and that is equivalent to the application 
of the ratio 

* *( ).довZ Pψ=   (12)

From (12) we obtain

* * *

*| ( ) | | |.дов дов довZ P P
d P dP Z Pσ σ ψ σ δ δ= ≈   (13)

The approximate equation is obtained by 
replacing the derivative with difference quotient, 
found by modeling Z *, and the given values P

дов
.

Not MSD of the confidence limit estimation 
itself is of practical interest, but its relation to the 
confidence limit 

* *

*| |.довZ P
Z Z Z Pγ σ σ δ δ= ≈   (14)

MSD of the confidence level estimation on п 
results of modeling is given by

( ) ( )* 1 . 1 .дов дов довP
Р Р п Р пσ = − ≈ −

In the simulation the authors used п=1000. Then, 
for a confidence level of 0,95, 0,98 and 0,99, P

σ  is 

respectively, equal to 0,0071, 0,0045 and 0,0032.
Values of ∆Z*/Z* and ∆P

дов
 can be determined 

by simulation results. For example, in the interval of 
confidence levels [0,98; 0,99] ∆P

дов
=0,01, and the 

ratio ∆Z*/Z* varies from a few hundredths to two-
tenths (Tables 2, 4–7). Accordingly, we find that the 
value of γ does not exceed six hundredths, which is 
quite acceptable for estimating the confidence limits.

conclusions.
1. The results shown in Tables 1, 2, 4 and 6, 

with a priori information about the type of the law of 
an error distribution of a single observation enable 
to define the confidence limits. In the absence 
of this information, it is possible to get an upper 
estimation for the absolute value of end values. For 
the considered distributions the worst is the Laplace 
distribution.

2. The data in Tables 5 and 7 help to assess 
the degree of an erroneous underestimation of 
the absolute values   of the confidence limits during 
the use of the same observational results in the 
evaluation of MSD and measurement errors.
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