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Background. We all use transport, shops, 
hospitals, and it is convenient when a social 
institution, a transport service point are located 
near us, those areas where our work, study, 
housing are located. The same applies to the 
locations of emergency, fire, rescue and other 
services. Here we will consider the economic-
mathematical model of the optimal location of 
social facilities for servicing the territory in the 
event of their piece-wise permanent deployment.

Objective. The objective of the authors is to 
c o n s i d e r  t h e o r e t i c a l  a n d  m e t h o d o l o g i c a l 
approaches to modeling the distribution of service 
points within a residential microdistrict.

Methods. The authors use general scientific 
a n d  e n g i n e e r i n g  m e t h o d s ,  m a t h e m a t i c a l 
apparatus, evaluation approach, modeling.

Results.
Mathematical model
Let’s consider the following model. Suppose 

we have a residential zone, located along the 
section [c, d] with a nonnegative population 
density ƒ(х). We assume that the function ƒ(х) is 
piecewise continuous. It is required to place on 
this section several service points so that the total 
costs of moving to them are minimal. It is assumed 
that the potential visitor uses the nearest service 
point.

We denote the points by a
i
, i = 1, 2, …, n (see 

Pic. 1). Respectively

2 31 2
1,2 2,3, , . . .

2 2

a aa a
a a

++
= =

– middle of the sections.
Each point a

i
 has some «attraction zone» to the 

left and to the right, going to it from the middle of 
the section connecting with the next point, or 
(at the ends) from the extreme points c or d. The 
costs are proportional to the expression
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We write down the extremum conditions for the 
objective function Q. Calculating the partial 
derivatives, we find:
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Equating the derivatives to zero, we obtain for 
each placed point the necessary conditions for the 
extremum in the form of the equality of the «population» 
in the left and right «attraction zones»:
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Pic. 1. Placement of objects.
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These conditions can easily be obtained by simple 
reasoning. Let there be no equality of population in 
the left and right attraction zones of a certain point. 
Then, for example, if the right area is «larger» than the 
left one, then a small shift of the item to the right will 
obviously reduce costs. This means that there is no 
extremum.

We rewrite conditions (1) in a more convenient 
form, using the notation

( ) ( )  .
x

c

F x f t dt= ∫
Then we obtain a chain of equations
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In the assumption 1

zeros of the function ƒ(х) –  isolated (2)
there is a chain of recurrence formulas:
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1 The case when this condition is violated 
will be discussed further .

where G(x) –  function, inverse of F(x). Substituting 
each equality into the next one, we obtain an equation 
of the form
H(a

1
) = F(d) (4)

with some function H(x). The set of solutions of such 
an equation (which, as we shall see, may even be a 
continuum) determines the location of the first service 
station. Next points under condition (2) are uniquely 
determined by the recurrence formulas (3) (see 
Pic. 2).

The variants found in this way satisfy the necessary 
extremum conditions, that is, they are stationary 
points of the function Q, but are not necessarily its 
local minima. The presence and form of the extremum, 
as a rule, can be determined by calculating partial 
derivatives of the second order:
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where the notations f
i
 = f(a

i
), f

i,, j
 = f(a

i,, j
) are used.

Pic. 3. One service point.

Pic. 4. Necessary optimality conditions for two points.

Pic. 2. Necessary conditions for optimality
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As a result, we obtain the following (three-
diagonal) Hessian matrix:

1 1,2 1,2

1,2 2 1,2 2,3 2,3

2,3 2 1,2 2,3

2 0,5 0,5 0  . . .

0,5 2 0,5 0,5 0,5  . . .
 .

0 0,5 2 0,5 0,5  . . .

 . . .  . . .  . . .  . . .

f f f

f f f f f

f f f f

− − 
 − − − − 
 − − −
  
 

To apply the Sylvester criterion, it is required that 
the function f(x) be continuous in the vicinity of the 
points a

i
.

Let’s consider simple special cases.
One service point
In this situation, the necessary conditions (1) 

become
1

1

( ) ( ) ,
a d

c a

f x dx f x dx=∫ ∫
that is, the point a

1
 should divide the «population» into 

two equal parts (see Pic. 3). It is clear that such a 
«median» point is

• either one (in particular, this will happen when 
condition (2) is satisfied);

• or «median» points form a whole section [α; β] 
(where α ≠ c; β ≠ d).

In the latter case, f(x) ≡ 0 on the whole section 
(at the points α and β, we can redefine f by continuity). 
That is, all points of the section [α; β] give the same 
value of the objective function. On leaving the section 
[α; β], Q values increase, so that each median point 
is an acceptable response.

Two service points
In this situation, the necessary conditions (1) 

become conditions for the «balance» of attraction 
zones:
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The graphically necessary condition for the 
extremum looks as shown in Pic. 4.

In particular, F(d) = 2S
1
 + 2S

2
, F(a

2
) –  F(a

1
) = S

1
 + 

S
2
 = F(d)/2.

The recurrence relations (3) in this case are 
written as follows:

Pic. 5. An example of a symmetric distribution.

Pic. 6. Optimal placement.

Pic. 7. An example of distribution. 
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and equation (4) takes the form
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Accordingly, the Hessian matrix:
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Thus, under the assumption that the function f(x) 
is continuous in the vicinity of the points a

1
 and a

2
, the 

Sylvester criterion gives the following sufficient 
conditions for a local minimum:
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Example 1. Let’s take the following situation (see 
Pic. 5).

Then
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Let the point a
1
 have the coordinate x. From the 

relations (3) we obtain successively
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Hence we find three options:
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Pic. 9. Possible placement of points.

Pic. 8. The presence of a «zero» zone.
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The average, symmetric, is the local maximum of 
the objective function Q. The answers for the original 
task are the first variant (Pic. 6) and the third 
symmetric to it.

Example 2. Let’s consider the situation in Pic. 7.
Analogous calculations lead to the equation

( ) ( ) ( )2 1,2

4 , 0 4 / 3,

16 16, 4 / 3 2,
8 16 2

16, 2 4,

12 32, 4 40 / 9 .

x x

x x
F F a F a

x

x x

≤ <
 − ≤ <= = − =  ≤ ≤
 − < ≤

The solution of this equation relative to x is the 
whole section [2; 4]. As it is easy to verify, the value 
of the objective function is constant and equal to 16. 
The answer for the initial task is

1

2

, 2 4,

1 16
,  .

3 3
16

a x x
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Q
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Two points in violation of condition (2)
Now the situation when the condition (2) is violated 

and the function f turns to 0 on the inner section 
(Pic. 8).

Let it be necessary to place two service points.
1) First, the case where both points are placed on 

the left section (see Pic. 9).

From the condition of equality of areas we find
( )1,2 1 2 1 1 1 1 2 22 , 3 , ,a a a a h a h a a h c= = ⋅ = − + ⋅

hence

( ) ( ) 2
1 2

1

1 3
, ,  .

4 4

h
a a Kc a a Kc K

h
= + = + =

Both points really lie in the first section, if in 
addition

( )3
3 ,

4
a Kc a a Kc+ ≤ ⇔ ≥

or if we introduce the notation a∙h
1 

= I
1
, с∙h

2 
= I

2
 –  the 

number of «inhabitants»
I
1 
≥ 3 I

2
. (6)

This arrangement, as is evident from condition 
(5), provides a local minimum of the objective 
function. The value of the function Q is:
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( ) ( ) ( )
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1 1 1 1 2 1

0 2

2 2 22
1 1 11

1 1 2 2

3 3

3 3 33
 .

2 2 2 2
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Q h a x dx h a x dx h x a dx

a a a b c a a b aa
h h h h

+ +

+

= − + − + − =

− + + − + −
= + + −

∫ ∫ ∫

2) The case where both service points are located 
in the right zone is reduced to the previous via obvious 
re-designations:

1 2, ,  .a c h h x a b c x↔ ↔ ↔ + + −

Pic. 10. Other possible placement of points.

Pic. 11. An example of distribution.

Pic. 12. An example of distribution.
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It remains to consider the case where in the first 
and third zones there is one service point.

3) Immediately note that if the «central» point a
1,2 

falls on the middle, «zero» section, then the only way 
to ensure equality of areas is to place points in the 
middle of the left and right sections. Then

1 2

2 2
1 2

,
2 2

 .

4

a c
a a a b

h a h c
Q

 = = + + 
 

⋅ + ⋅ 
= 

 

The point a
1,2

 does indeed fall into the middle 
section under the condition

2  .c a b− ≤  (7)

4) Let’s now take the case (Pic.10), when the point 
a

1,2 
falls on the left section (with the right one all the 

same).
Again from the equality of areas:

( ) ( ) ( )
1,2 1 2 1

1 1,2 2 2 2 2

2 , 3 ,

 .

a a a a

h a a h a a b h a b c a

= =

⋅ − + − − = ⋅ + + −

Hence when K ≠ 1/3:

( )
1

/ 2 / 2
 .

3 1

K a b c a
a

K

+ + −
=

−

If K < 1/3, then the second of the inequalities (5) 
has the opposite sign, so there is no extremum.

If K> 1/3, then additional requirements arise:

( )
1,2

2 1

2 / 2
0 ;

3 1
3  .

K a b c a
a a

K
a b a a a b c

+ + −
≤ = ≤

−
+ ≤ = ≤ + +

If K = 1/3, then, depending on the value of the 
numerator, fractions for a

1
 stationary points of the 

form in question are either not at all, or they can form 
a whole range of possible values. Indeed, a stationary 
arrangement of this kind is possible only if a + b + c/2 = 
3a/2, that is, a = 2b + c. And it is easy to understand 
that then the solution is any pair (a

1;
 3a

1
), where (a + 

b) /3 ≤ a
1
 ≤ a/2.

Example 3. Let’s consider the situation in Pic. 11.
In this case, a = 4, b = 2, c = 3, К = 4. For the 

«central» location of service points:

1 22, 7,5,
 .

13

a a

Q

= = 
 = 

If a
1,2

 ≤ 4, then

1,2
1 2 1,2 1, 2 6,

2

a
a a a a= = − ≤

which is impossible due to violation of the condition 
of equality of areas.

Since I
2 
≥ 3I

1
 (12 ≥ 12), there are two points on the 

right section. We find them using the formulas:

( ) ( ) 2
1 2

1

1 3
, ,  .

4 4

h
a a Kc a a Kc K

h
= + = + =

But in the «opposite» direction:

1 26, 8,
 .

26 .

a a

Q

= = 
 = 

This option is inferior to the «central» option.

Example 4. Suppose that there are two residential 
units Т

1
 and Т

2
 in the service area with the corresponding 

sections of uniform distribution –  [0, 400 m], [500 m, 
700 m], and the «intensity» of residential units is 3000, 
500. It is required to place two service points.

We have:

1 2

1

2

400, 3000, 500,

3000
7,5, 700 500 200,

400
500

2,5 .
200

2,5 1
500 400 100,  .

7,5 3

a I I

h c

h

b K

= = =

= = = − =

= =

= − = = =

Condition (6) is satisfied, so that we first consider 
the case when both points are placed on the first 
section. We have:

( )1 2 1

1 400 200 / 3
116,67, 3 350 .

4 4
a a Kc a a

+
= + = ≈ = =

Objective function value

( ) ( )

( )

2 22
1 11

1 1 2

2

1
2

3 33

2 2 2

3
287500 .

2

a a a b c aa
Q h h h

a b a
h

− + + −
= + + −

+ −
− =

The condition (7) is also satisfied here, so we can 
also consider the «central» arrangement of service 
points:

( )

1

2

2 2
1 2

/ 2 200,

/ 2 600,  .

/ 4 300000

a a

a a b c

Q h a h c

 = = 
 = + + =
 
 = ⋅ + ⋅ = 

This option is worse.
Finally, we take the case when the service points 

are located in both the first and the third zones, and 
the middle point is in the first zone. 

Since a + b + c/2 = 3a/2, the solution is any pair 
(a

1;
3a

1
), where (a + b)/3 ≤ a

1 
≤ a/2, i. e. points

1

2 1

500
200,

3
3 ,

325500

a

a a

Q

 ≤ ≤ 
 

= 
 =  
 
are stationary. But this option is also inferior to the 
first.

So, the optimal location of service points is:

1 2116,67, 350,
 .

287500 .

a a

Q

≈ = 
 ≈ 

Example 5. In the previous example, we change 
the third section from [500 m, 700 m] to [450 m, 
650 m]. Then, as before

1 2

2,5 1
400, 7,5, 200, 2,5,  .

7,5 3
a h c h K= = = = = =

only b will change. A variant with a continuous 
arrangement of stationary points becomes impossible, 
and from the other two optimal as before remains
( )1 2116,67, 350  .a a≈ =

Example 6. Let there be two residential units Т
1
 

and Т
2
 in the service area with the corresponding 

sections of the uniform distribution –  [0, 400 m], 
[500 m, 600 m], and the «intensities» of the residential 
units are respectively equal to 3000, 1000. It is 
required to place two service points.
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1 2

1

2

400, 3000, 500,

3000
7,5, 600 500 100,

400
1000

10 . 500 400 100,
100
10 4

 .
7,5 3

a I I

h c

h b

K

= = =

= = = − =

= = = − =

= =

Condition (6) I
1
 ≥ 3I

2
 is satisfied, therefore we 

consider first the case when both service points are 
located in the first section. We have:

( )1 2 1

1 400 400 / 3
133,33, 3 400 .

4 4
a a Kc a a

+
= + = ≈ = =

Objective function value

( ) ( )

( )

2 22
1 11

1 1 2

2

1
2

3 33

2 2 2

3
350000 .

2

a a a b c aa
Q h h h

a b a
h

− + + −
= + + −

+ −
− =

The condition (7) is not satisfied, so that the 
«central» arrangement of the points is not considered.

The option remains, when the service points are 
located in the extreme zones and the middle point 
does not fall into the zero section.

( )
1 2 1

/ 2 / 2
177,78, 3 533,33 .

3 1

K a b c a
a a a

K

+ + −
= ≈ = ≈

−
In this case, the midpoint hit the first section, and 

the value of the objective function Q = 316666,67, 
which is better.

So, the optimal location of service points:
( )1 2177,78, 533,33a a≈ ≈ .

Arbitrary number of points
If condition (2) is satisfied for a piecewise constant 

function f, the chain of equalities (3) makes it possible 
to construct a solution explicitly for a large number of 
service points.

Example 7. Let the function f be constant 
throughout the section, which corresponds to the 
presence of only one residential unit. Then the equality 
condition for the areas can obviously be satisfied only 
if the points a

1
, a

1,2
, a

2
, a

2,3
, … divide the section into 

equal parts. The segment is divided into 2k equal 
parts, and points with odd numbers are chosen to 
place the points.

Example 8. Let’s find the optimal arrangement 
of three, four and five service points for the density 
function:

Let the point a
1
 have the coordinate x. For three 

points, recurrent calculations lead to the equation

( ) ( ) ( )3 2,3

6 , 0 0,8,

26 16, 0,8 1,

6 16, 1 4 / 3,
12 28 2

30 32, 4 / 3 2,

2 32, 2 4,

18 48, 4 68 /15 .

x x

x x

x x
F F a F a

x x

x x

x x

≤ <
 − ≤ <
− + ≤ ≤= = − =  − < ≤
− + < ≤


− < ≤

Hence there are two options:

1 2 3

1 2 3

2, 6, 10,
,

28

38 / 9, 22 / 3, 94 / 9,

244 / 9

a a a

Q

a a a

Q

= = = 
 = 

= = = 
 = 

.

The global minimum is provided by the second of 
these options.

Now four points. We have:

( ) ( ) ( )4 3,412 28 2

8 , 0 4 / 7,

36 16, 4 / 7 2 / 3,

12 16, 2 / 3 0,8,

48 32, 0,8 1,

16 32, 1 4 / 3,

44 48, 4 / 3 68 / 37 .

F F a F a

x x

x x

x x

x x

x x

x x

= = − =

≤ <
 − ≤ <
− + ≤ ≤=  − < ≤
− + < ≤


− < ≤

Hence we find the best option:

1 2 3 419 /11, 57 /11, 87 /11, 117 /11,
 .

218 /11

a a a a

Q

= = = = 
 

= 
For five service points, the optimal location is as 

follows:

1 2 3

4 5

46 / 29, 138 / 29, 198 / 29,

258 / 29, 318 / 29,

452 / 29

a a a

a a

Q

= = = 
 

= = 
 = 

.

Conclusion. The developed mathematical model  
allows selecting options of siting of everyday 
demanded facilities within an urban district (under the 
condition of approximately even distribution of their 
density),  which are less expensive for transit of 
inhabitants.

The model can be used in the planning of 
residential areas and the street-road network, while 
finding the optimal location of rescue services in 
transport, bus stops and other social facilities.
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