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Background. The development of the procedures 
of technical implementation of maneuvers of vessels 
with vortex propulsion units, including start of motion 
with the output to the steady-state mode, reverse 
process up to the stop of the vessel, change in the 
course from the conditions of pre-established time 
and minimal power consumed and principal non-use 
of traditional vessels’ steering devices, as well as 
predesign of technical devices, which implement 
maneuvering.

Advantages of vortex propulsion units [1–3] are 
implemented to the fullest extent in the steady-state 
mode of vessels’ motion, i. e. at speed constant in 
value and direction. Such vessels are almost not 
subject to drag and power consumed by them is some 
orders lower than the same of vessels, made using a 
traditional scheme «body–propulsion unit», located 
one after another [4].

The nature of advantages of vessels described in 
[1], is that the propulsion unit does not «push» the 
vessel’s body and itself through water or air, but being 
a generator of a vortex pair [4] and immersed in areas 
of closed flows in the vicinity of this pair, moves 
together with it.

The absence of drag is explained by the fact that 
in the entire space around the vortex pair the flow with 

continuous distribution of speed (without jumps) is 
realized [5–7]. The power to keep such flow and 
motion of vessels is due to the dissipative losses, i. e. 
for viscous friction on the surface (at the border) 
«vortex generator –  medium». It should be noted that 
in surface vessels with vortex propulsion units the 
body is located above water and floatage of the vessel 
is ensured by the volume of vortex generators, 
immersed in water.

The rugged body of the submarine vessel is in the 
form of a hollow sealed torus, and its propulsion unit 
and vortex generator is a comparatively thin-walled 
toroidal shell, equidistant to the outer surface of the 
body and rotatable mounted relative to the body. 
Since the linear speed of the outer surfaces of the 
generators has cavitation limitations [1, 8], determined 
by the absolute pressure in the water environment, 
submarine vessels with vortex propellers can develop 
a speed much higher than the speed of the surface 
ones.

It is obvious that the mass of water (air in the case 
of an airship) in the closed flow region has kinetic 
energy
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ABSTRACT
The paper proposes a schematic diagram of an 

additional device for vortex propulsion units of vessels 
and algorithms for computer simulation of their use 
for various maneuvering options.

The paper describes the advantages of vessels 
with propulsion units in the form of generators of 
vortex pairs, including toroidal vortices (thermals), 
the efficiency of propulsion units of which increases 
with the increase in their dimensions. A comprehensive 
analysis of the specifics of maneuvering of such 
vessels is presented. Practical inapplicability of 
traditional vessels’ devices for changing the course 
of the vessel and unacceptable duration of reaching 

steady-state modes and the stopping process when 
using only regular vortex generators are shown.

A sequence of actions with vortex generators is 
described for the main types of maneuvers. In the paper, 
a schematic diagram of an additional device (with an 
estimation of its physical dimensions) is proposed to the 
vortex propulsion units of vessels, which ensures 
unwinding or braking of the «attached» mass for a 
predetermined time with minimal loss of power. 
Algorithms for computer simulation of the change in the 
nature of the flow in the closed flow region are developed 
using the proposed additional acceleration device. It is 
shown that the algorithms implemented in the work can 
be used in the control of a real vessel. 

Pic. 1. Dependence of the specific (per generator’s linear meter) kinetic energy of the «attached» 
mass on the radius of the vortex generator.
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where Ω – attached volume of water, i.e. volume of the closed flow region.

To estimate E it is possible to use 

E=Dv2, (1′)

where D – displacement of the vessel (kg), v – speed of its translational motion in the

steady state.

Said kinetic energy is transmitted from the vortex generator to the attached 

mass during the entire time from the start of the drive propeller to the exit of the 

vessel to the steady state. The value of E can be very large, and the larger the size 

(displacement) of the ship, so that the vortex generator, designed only to compensate 

for the dissipative losses, can transmit this energy to the attached mass for a very 

large, possibly almost unacceptable, time [1].

Pic. 1. Dependence of the specific (per generator’s linear meter) kinetic energy of the 

“attached” mass on the radius of the vortex generator.
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where Ω –  attached volume of water, i. e. volume of 
the closed flow region.

To estimate E it is possible to use
E = Dν2,  (1′)
where D –  displacement of the vessel (kg), ν –  speed 
of its translational motion in the steady state.

Said kinetic energy is transmitted from the 
vortex generator to the attached mass during the 
entire time from the start of the drive propeller to 
the exit of the vessel to the steady state. The value 
of E can be very large, and the larger the size 
(displacement) of the ship, so that the vortex 
generator, designed only to compensate for the 
dissipative losses, can transmit this energy to the 
attached mass for a very large, possibly almost 
unacceptable, time [1].

From what has been said, it is clear that it is 
necessary to develop methods and devices for 
minimizing the time to reach the steady-state mode 
of vortex propulsors of vessels.

From what has been said, it is clear that it is 
necessary to develop methods and devices for 
minimizing the time to reach the steady-state mode 
of vortex propulsion units of vessels.

Objective. The objective of the authors is to 
consider different aspects of engineering and 
modeling of optimal maneuvering of vessels with 
vortex propulsion units.

Methods. The authors use general scientific and 
engineering methods, modeling, comparative 
analysis, evaluation approach, scientific description.

Results.
1. Schemes for changing the rotational regimes 

of the vortex generators that provide maneuvering of 
vessels, and the energy consumed for this.

Since the speed vector V


of the vessel is uniquely 
determined by the configuration of the flow of the 
«attached mass» of water in the closed region, the 
most natural way of affecting the vector is a change 
in the nature of the flow itself.

It is quite obvious that to change the speed of 
motion to the opposite one, it is sufficient to change 
the rotational speed of all the vortex generators to the 
opposite angular velocities, which is easily realized 
for both surface and underwater vessels. Schemes 
for changing rotor rotation for the correction of the 
velocity vector at angles other than p for surface 
vessels with two rotor pairs and for underwater vessels 
are presented in Table 1.

A change in the direction of the vector V


by an 
angle p/2 (Table 1, line I) is achieved by reversing the 
rotation of two rotors arranged diagonally, i. e. rotors 
of various vortex. With this maneuver, the body of the 
surface vessel does not rotate and as a result moves 
«sideways». The spatial orientation of the vessel, 

Table 1
Summary table of change in rotation modes of vortex generators

Ve
ss

el
’s

  
ty

pe

Initial mode Transient mode Steady-state mode 
(after maneuver)

Speed vector 
after maneuver

a b c

S
ur

fa
ce

 v
es

se
l

Ve
ss

el
s’

 r
ot

at
io

n
 a

n
d 

sp
ee

d 
ve

ct
or

 b
y 

an
gl

e 
p/

2

I * exp
2

V V i
p =  

 

Ve
ss

el
’s

 r
ot

at
io

n
 a

n
d 

sp
ee

d 
ve

ct
or

 b
y 

an
gl

e 
ϕ

II ( )* expV V i

k

φ

φ ωτ

=

=

U
n

de
rw

at
er

 v
es

se
l

Ve
ss

el
’s

 r
ot

at
io

n
 a

n
d 

sp
ee

d 
ve

ct
or

 b
y 

an
gl

e 
ϕ

III ( )* expV V i

k

φ

φ ωτ

=

=

•  WORLD OF TRANSPORT AND TRANSPORTATION, Vol. 15, Iss. 5, pp.14–27 (2017)

Ostroukhov, Nikolai N., Chumakova, Ekaterina V. Engineering and Modeling of Optimal Maneuvering 
of Vessels with Vortex Propulsion Units



24

including the rotor system of the vortex generators, 
does not change.

Rotation of the speed vector by an angle from 0 to 
p/2 (Table 1, line II) is achieved by turning all rotors in 
the same direction for some time τ. In this mode, the 
vessel, as a whole, acquires the angular speed of 
rotation ω*, which is opposite to the rotor speeds ω.For 
more precise adjustment (ω*) in one direction, not all, 
but any uncompensated number of rotors can be 
rotated. As a result, the vessel turns on an angle ϕ = ω*t.

Since the speed vector of the underwater 
(toroidal) vessel is oriented perpendicular to the 

median plane of the torus, to rotate the vector V


by 

any angle other than p, the orientation of the median 
plane should be changed. To do this, it is sufficient to 
change the rotation mode of the diametrically 
opposite sections of the rotating shell of the 
underwater vessel (Table 1, line III). Rotation of a 
vessel as a whole by a certain angle is a time-
consuming process, in contrast to maneuvering with 

a change in the direction of the vector V


 at angles p 

and p/2, representing a set of discrete individual 
actions (stopping and spinning of the rotors).

The maneuver with rotation to angles 0 ≤ ϕ < p/2 
of surface and to arbitrary angles of underwater 
vessels is complicated by the need to take into 
account the inertia that the rotational mode of the 
rotors initiating the turn of the vessel must be slowed 
down or stopped before reaching a given angle of 
rotation so that this rotation angle to be achieved by 
inertia.

Energy costs per maneuv er in the f irst 
approximation are equal to twice the value of the 
kinetic energy in the region of closed flow of 
generators of all vortex pairs. This is due to the fact 
that to reduce the time of maneuver, any change in 
the rotation mode implies first a forced stop of the 
rotation of water established before the start of the 
maneuver, and then unwinding in a new direction.

2.  Limit estimates of a closed flow formation time.
The initial data for the limit estimates of the 

formation time of a closed flow in the vicinity of a vortex 
propulsion unit are the kinetic energy of the attached 
mass of the medium in the steady-state mode Е and 
the power P transmitted to the medium from the vortex 
generator performed by several (at least two) design 
schemes.

The minimum power transmitted to the liquid 
corresponds to the case of a smooth cylindrical rotor 
of diameter d = 2a rotating in water with angular speed 
ω. An estimate from above of this power is the case 
of rotation in immobile water.

Force acting on one running meter of the rotor 
[9]:

F
m  

= μ 2pa grad u,  (2)
 
where m –  dynamic viscosity of the fluid, and the 
maximum speed gradient is defined as follows [10]:

maxv
grad u

δ
= .  (3)

The thickness of the boundary layer δ is estimated 
from relation

Pic. 2. Dependence of the specific (per running meter of the vortex generator) power transmitted to the medium 
by the smooth rotor of the vortex generator on the radius of the vortex generator.

Pic. 3. Estimation of time of unwinding of the attached mass by a smooth rotor.
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Re

Lδ = ,  (4)

where L –  characteristic linear dimension of the 
streamlined body, Re –  Reynolds number, which is 
defined by formula

2
Re

a up ρ
m

= .  (5)

However the value grad u decreases in proportion 
to the distance from the rotor surface, so we take as 

an average estimate maxv
grad u

a
= .

The power consumed at the stage of unwinding 
of rotors can be estimated from the following 
relationship:

N = F
mp

v
max 

= μ 2pa grad u.  (6)

Pic. 2 depicts the dependence of the power 
transmitted to the immobile water on the rotor radius, 
and Pic. 3 –  estimation of the unwinding time of the 
attached mass t = E/N. It can be seen that this option 
is practically unacceptable.

Another estimation of the power that ensures the 
unwinding of the attached mass can be made by 
setting an acceptable time t, which is necessary to 

start motion, on the order of 30 minutes. Pic. 4 shows 
the calculated dependencies of the required power 
for acceleration time of 15 and 30 minutes.

The simplest way to transfer such increased power 
is to introduce one or more blades into the design. In 
the case of a single blade oriented in the radial 
direction of the rotor, while the length of the rotor 
forming a length equal to the length, the force acting 
on it when the rotor rotates in immobile water is:

2( )

2bl

v r
F S

ρ
= ,  (7)

where ν(r) –  local linear speed of a blade, equal to ωr; 
r –  radial coordinate of a blade; S –  its area. Accordingly, 
maximum power transmitted by a blade to water:

3( )
( )

2bl

v r
P F v r S

ρ
= = .  (8)

Pic. 5 shows the dependence of width of one blade, 
capable of transmitting the previously determined 
power L(P) to water, for different radii of rotors.

It can be shown that the power transmitted by the 
blade, i. e. the amount of water required for 
reconstructing the flow of water in the closed flow 
region is at least an order of magnitude less than the 
power required for a traditional split design «body–
propulsion unit» to overcome drag with a cross section 

Pic. 4. Dependence of the power consumed on the radius of the rotor for a given unwinding time 
(a –  for a surface vessel, b –  for an underwater vessel).
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Pic. 5. Dependence of width of the longitudinal blade on the power required to accelerate the attached mass.
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of the body of the order of a2 and is estimated by the 
ratio of the width of the blade to this transverse 
dimension, i. e. s/a.

1. Controlled block of retractable vanes with 
adjustable angle of attack.

The blade with the dimensions defined in the 
previous section only transmits the calculated 
power to water only at the moment of starting the 
rotation of the rotor when water is stationary relative 
to the blade and the speed head is determined by 
the speed of blade motion. As water disperses, 

speed of the blade relative to it decreases by the 
speed of water and, accordingly, the speed head 
of the medium and the power transmitted to the 
water decrease. It is impossible to compensate for 
the decrease in the speed head by increasing the 
speed of the blade, since the linear speed of the 
blade should not differ significantly from the local 
water speed in the steady state. The most obvious 
way to increase the transmitted power in a 
continuously decreasing difference in blade and 
water speeds is to increase the effective area of the 
blade. In addition, it is relatively clear that the radius 
of rotation of the blade should not remain unchanged 
during the entire unwinding time of the attached 
mass, since the transmission of the impulse directly 
by the blade to the individual layers of water is more 
effective than the transmission of this pulse from 
one of the rotors due to viscosity. In other words, 
the effective unwinding of the attached mass by any 
mechanical device of invariable configuration is 
impossible.

Pic. 6 is a schematic diagram of a controlled set 
of retractable blades with an adjustable angle of 
attack.

In the initial state, the blades, made in the form of 
long and relatively thick plates, are located in the 
recesses (grooves) of the outer surface of the rotor 
of the vortex generator, so that one of their lateral 
surfaces is flush with the cylindrical surface of the rotor 
(Pic. 7).

Each of the blades is fastened to the end of the 
retractable rod. The rod length in the radial direction is 
somewhat (approximately the width of the blade) less 
than the distance from the rotor surface to the nearest 
boundary of the closed flow region.

Unwinding of the «attached mass» by the described 
blade block is carried out as follows. To drive the rotor 
with a blade block, a fixed-power motor is used, which 
is set by the time of unwinding. The rotor shell is driven 
into rotation with a calculated angular velocity ω

0
. The 

software-controlled mechanism for extension of the 
rods rotates the blades so that the effective flow area 
of the latter corresponds to the design width of the 
single blade defined in point 2 (option –  the blade is 

Pic. 7. Scheme of a rotor with a retractable blade.
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transmission of the impulse directly by the blade to the individual layers of water is

more effective than the transmission of this pulse from one of the rotors due to 

viscosity. In other words, the effective unwinding of the attached mass by any 

mechanical device of invariable configuration is impossible.

Pic. 6 is a schematic diagram of a controlled set of retractable blades with an 

adjustable angle of attack.

Pic. 6. Schematic diagram of the controlled block of retractable blades:

1 – rotor of the vortex generator, 2 – blades in the steady-state motion mode, a – rotor 

radius, L – distance between the rotors.

In the initial state, the blades, made in the form of long and relatively thick 

plates, are located in the recesses (grooves) of the outer surface of the rotor of the 

vortex generator, so that one of their lateral surfaces is flush with the cylindrical 

surface of the rotor (Pic. 7).

Each of the blades is fastened to the end of the retractable rod. The rod length 

in the radial direction is somewhat (approximately the width of the blade) less than 

the distance from the rotor surface to the nearest boundary of the closed flow region.

Pic. 7. Scheme of a rotor with a retractable blade.

Unwinding of the “attached mass” by the described blade block is carried out 

as follows. To drive the rotor with a blade block, a fixed-power motor is used, which 

is set by the time of unwinding. The rotor shell is driven into rotation with a 

calculated angular velocity ω0. The software-controlled mechanism for extension of 

the rods rotates the blades so that the effective flow area of the latter corresponds to 

the design width of the single blade defined in point 2 (option – the blade is oriented 

either by force of resistance or by power). The speed of blade extension and 

Pic. 8. The window of the application, which simulates the algorithm of the mechanism 
of unwinding of the «attached volume» of the medium.

Pic. 6. Schematic diagram of the controlled block of 
retractable blades:

1 –  rotor of the vortex generator, 2 –  blades in 
the steady-state motion mode, a –  rotor radius, 

L –  distance between the rotors.
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oriented either by force of resistance or by power). The 
speed of blade extension and subsequent retraction is 
determined by the set up time t: half the time –  for 
extension and the same for return.

During the unwinding process, the rotor’s angular 
velocity changes according to the law ω = ω • a/r, where 
r is the instantaneous value of the radius where the 
center of the blade is.

The control of the described blade block is made 
by comparing the program (calculated) power values 
used for water dispersal, the position and orientation 
of the blades, the angular rotational speed of the rotor, 
the water velocity at various points in the closed flow 
region, and their actual (measured) values.

2. Development of software for modeling the 
mechanism of unwinding of the «attached volume» of 
the medium.

The above graphs are valid for a narrow class of 
vessels with certain overall  characteristics. 
Obviously, a tool kit in the form of software is needed 
that allows to obtain estimated characteristics of the 
output to a stationary (cruising) mode based on a 
given type of vessel (surface or underwater) and its 
overall dimensions (displacement). On the basis of 
the stated mathematical apparatus, it is possible to 
form an algorithmic sequence of calculation of 
characteristics that can be used in vessel’s control. 
Pic. 8 shows the window of the application being 
developed.

Programmed control should be based on the fact 
that the effective width of the blade, corresponding to 
the angle of attack at each instant of water unwinding 
time, is determined on the basis of the measurements 
obtained from the sensors or the force acting on the 
blade or the power expended on the blade movement 
in water.

For each vessel size there is a blade width sufficient 
for the vessel’s acceleration in a minimum time. This 
width may be unacceptable for the design of the rotor, 
since the width of the blade should be much less than 
the radius of the rotor (L << a). If this condition is not 
estimated (with insufficient power), it is necessary to 
use several blades in the rotor design, which will reduce 
their width. At the same time, in the control process, 
one should take into account the synchronism of their 
extension and the change in the angles of attack of 
each for the optimal power consumption for unwinding 
of the attached mass of water.

Conclusions.
The computational and theoretical modeling of the 

maneuvering processes of water vessels with vortex 
propulsion units was performed:

– hydrodynamic principles of vessel’s maneuvering 
by changing the rotation modes of individual elements 
of the vortex generators are formulated;

– it is shown that for effective use of vortex 
propulsion units for large-sized underwater and surface 
vessels, special measures are necessary to ensure the 
dispersal of water in the closed flow region («attached 
mass») in a predetermined and acceptable time, which 

in turn requires implementation of the operating mode 
of the propulsion unit, which is substantially different 
from its load when the vessel moves at a steady speed;

– for vessels with vortex propulsion units, the 
necessity of using special devices for unwinding of 
water in the closed flow area («attached mass») is 
justified when the vessel moves from a resting state to 
a steady-state mode;

– a constructive scheme of a controlled block of 
retractable blades with a variable angle of attack 
mounted on the rotor of the vortex generator is 
provided, which ensures a change in the flow regime 
of the «attached mass» of water for a given time;

– it is shown that the power required to perform 
maneuvers of vessels with vortex propulsion units 
(necessary in relatively short intervals of time) does 
not exceed the power necessary to overcome the 
drag of traditional layout vessels of the same 
displacement;

– software was developed to evaluate the mode of 
unwinding of the «attached volume» of the medium; 
simulation of distribution of water speed in the closed 
flow region made it possible to form control 
dependences –  the values of the blade’s attack angles 
from the predetermined time of the change in the flow 
regime of the «attached mass» of water.
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