Решение транспортной задачи методом последовательного уменьшения её размерности

Виктор ИВНИЦКИЙ Victor A. IVNITSKY

Андрей МАКАРЕНКО

Solution of the Transport Problem by the Method of Successively **Decreasing its Dimension** (текст статьи на англ. яз. -English text of the article – p. 39)

В статье рассматривается решение транспортной задачи двумя способами: методом северо-западного угла и методом минимального элемента. В результате анализа доказывается, что метод минимального элемента позволяет сократить количество итераций в несколько раз. При решении сложных задач большой размерности выбор рационального метода играет определяющую роль, что и демонстрирует способ последовательного уменьшения подобной размерности посредством используемых алгоритмов оптимизации распределения поставок (перевозок) товара.

> <u>Ключевые слова:</u> транспортная задача, логистика, оптимизация, программирование, методы решения, размерность, алгоритмы.

Ивницкий Виктор Аронович — доктор технических наук, профессор кафедры автоматизированных систем управления Российского университета транспорта (МИИТ), Москва, Россия. **Макаренко Андрей Александрович** — студент Российского университета транспорта (МИИТ), Москва, Россия.

ранспортная задача — это поиск оптимального распределения поставок однородного товара от поставщиков к потребителям при известных затратах на перевозку (тарифах) между пунктами отправления и назначения. Является задачей линейного программирования специального вида. Решение её начинается с нахождения опорного плана.

В публикуемой статье сравниваются два способа решения такой задачи:

- 1. Опорный план формируется методом северо-западного угла.
- 2. Опорный план найден методом минимального элемента.

Искомый результат решения транспортной задачи: все заявки удовлетворены, все запасы исчерпаны, суммарная стоимость всех перевозок минимальна. Методы решения сводятся к операциям с таблицей, где в определённом порядке записаны все условия задачи. Такая таблица называется транспортной. В ней записываются:

- пункты отправления и назначения:
- запасы, имеющиеся в пунктах отправления (ПО);
- заявки, поданные пунктами назначения (ПН);

Образец транспортной таблицы

ПО / ПН	B_1	B_2	 B _n	Запасы а,
A_1	a ₁₁	a ₁₂	 a _{ln}	a ₁
A_2	a ₂₁	a ₂₂	 a _{2n}	a_2
$A_{\rm m}$	a _{m1}	a_{m2}	 a _{mn}	a_{m}
Заявки b _j	b ₁	b_2	 b _n	$\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$

- стоимости перевозок из каждого пункта отправления в каждый пункт назначения.

ПОСТАНОВКА ЗАДАЧИ

Имеется m пунктов отправления: A_v , ..., A_{m} , в которых сосредоточены запасы какого-то однородного товара (груза) в количестве $a_{n},...,a_{m}$ единиц. Кроме того, известны п пунктов назначения: $B_p, ..., B_n$, подавших заявку соответственно на b_1 b_n единиц товара. Предполагается, что сумма всех заявок равна сумме всех запасов:

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

 $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$. Установлена стоимость a_{ij} перевозки единицы груза от каждого пункта отправления до каждого пункта назначения. Таблица (матрица) стоимостей перевозки a_{ii} единицы груза задана в следующем виде:

$$\begin{bmatrix} a_{11} \, a_{12} \dots \, a_{1n} \\ a_{21} \, a_{22} \dots \, a_{2n} \\ \dots \dots \dots \dots \\ a_{m1} \, a_{m2} \dots \, a_{mn} \end{bmatrix}$$

Размерностью этой матрицы $m \cdot n$ можно определять и размерность самой транспортной задачи.

Требуется составить такой план перевозок, при котором все заявки были бы выполнены, и при этом общая стоимость перевозок оказалась минимальна. При такой постановке задачи показателем эффективности плана является стоимость.

Обозначим x_{ii} — количество груза, перевозимого из пункта отправления A в пункт назначения B_i . Неотрицательные переменные x_{ii} должны удовлетворять следующим условиям:

1. Суммарное количество груза, направляемого из каждого пункта отправления во все пункты назначения, должно быть равно запасу груза в своём пункте. Это даёт т

условий равенств:
$$\sum_{j=1}^{n} x_{ij} = a_i, i = 1,...,m$$
.

2. Суммарное количество груза, доставляемого в каждый пункт назначения из всех пунктов отправления, должно быть равно заявке, поданной соответствующим пунктом. Это даёт n условий равенств:

$$\sum_{i=1}^{m} x_{ij} = b_j, j = 1, ..., n.$$

3. Суммарная стоимость всех перевозок должна быть минимальной, т.е. должен

быть найден
$$\min_{x_{11},\dots,x_{mn}} \sum_{i=1}^m \sum_{j=1}^n a_{ij} x_{ij}$$
 .

Стоимости перевозок помещаются в правом верхнем углу каждой ячейки таблицы 1, чтобы в самой ячейке при составлении плана помещать перевозки x_{ii} (см. таблицу 1).

Ранг системы ограничений-уравнений равен r = m + n - 1, где m -число строк, n — число столбцов транспортной таблицы. В каждом опорном плане будут отличны от нуля не более m + n = 1 перевозок. Ячейки таблицы, в которых будем записывать отличные от нуля перевозки, называются базисными, а остальные (пустые) – свободными.

Решение задачи сводится к следующему. Надо найти те значения перевозок, которые, будучи проставлены в базисных клетках транспортной таблицы, удовлетворяли бы таким условиям:

- сумма перевозок в каждой строке таблицы должна быть равна запасу данного ПО;
- сумма перевозок в каждом столбце должна быть равна заявке данного ПН;
- общая стоимость перевозок минимальная.

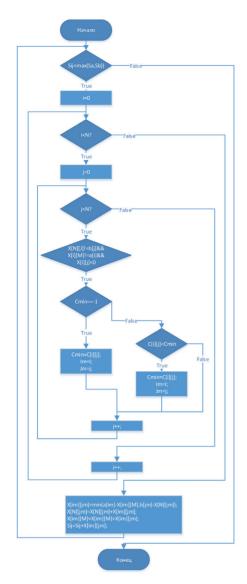


Рис. 1. Блок-схема алгоритма работы программы.

СПОСОБЫ РЕШЕНИЯ

Метод северо-западного угла рассчитан на получение доступного начального решения транспортной задачи. Был предложен Дж. Данцигом в 1951 г. и позднее назван «правилом северо-западного угла» (Чарнес, Купер). Суть метода в последовательном переборе строк и столбцов транспортной таблицы, начиная с левого столбца и верхней строки, и выписывании максимально возможных отгрузов в соответствующие ячейки таблицы так, чтобы не были превышены заявленные в задаче ресурсы поставщика или потребности товарополучателя. На цены доставки метод не акцентирован, поскольку

в дальнейшем ожидается оптимизация отгрузок.

Метод последовательного уменьшения размерности транспортной задачи (метод минимального элемента) состоит в использовании следующего алгоритма.

- 1. Находим клетку таблицы 1 с минимальной стоимостью перевозки единицы груза, т.е. $\min_{1 \le i \le m, 1 \le j \le n} a_{ij}$, где i номер пункта отправления (ПО), j номер пункта назначения (ПН).
- 2. В этой клетке будет находиться стоимость $a_{il,jl}$ и номер клетки равен (i_p,j_p) , то есть она находится на пересечении j_p -го столбца с заявкой b_{il} и i_p -й строки с запасом a_{ip} .
 - 3. Далее находим $min(a_{ip}, b_{ip})$.
- 4. Если $min(a_{ij}, b_{jj}) = a_{ij}$, то в клетку с номером (i_j, j_l) ставим перевозку $x_{il,jl} = a_{il}$, запас a_{il} полагается равным нулю и строчка A_{il} вычёркивается. При этом транспортная задача исходной размерности $m \cdot n$ превращается в транспортную задачу размерности $(m-1) \cdot n$. Стоимость обслуживаемой перевозки будет равна $a_{il} \cdot a_{il,il}$.
- 5. Если $min(a_{il}, b_{jl}) = b_{jl}$, то в клетку с номером (i_l, j_l) ставим перевозку $x_{il,jl} = b_{il}$, заявка b_{il} полагается равной нулю и столбец B_{il} вычёркивается. При этом транспортная задача исходной размерности $m \cdot n$ превращается в транспортную задачу размерности $m \cdot (n-1)$. Стоимость перевозки будет $b_i \cdot a_{il}$.
- 6. Если $min(a_{ii}, b_{ji}) = a_{il} = b_{ji}$, то в клетку с номером (i_p, j_p) ставим перевозку $x_{il,jl} = b_{il} = a_{il}$, запас a_{il} полагается равным нулю и строчка A_{il} вычёркивается и заявка b_{li} полагается равной нулю и столбец B_{il} вычёркивается. Стоимость перевозки $b_{jl} \cdot a_{il,jl} = a_{il} \cdot a_{il,jl}$.
- 7. При этом транспортная задача исходной размерности $m \cdot n$ превращается в транспортную задачу размерности $(m-1) \cdot (n-1)$.
- 8. Далее в видоизменённой таблице 1 находим клетку с минимальной стоимостью перевозки единицы груза, т.е. $\min_{1 \le i \le m, 1 \le j \le n} a_{ij}$, где i номер пункта отправления, j номер пункта назначения.
- 9. Затем повторяются пункты 2—7 алгоритма до тех пор, пока не будут вычеркнуты все строки и столбцы таблицы 1.

```
//Макаренко А.А. УИС-411
float Sij = 0;
do
int im;
int im:
int Cmin = -1:
for(int \ i = 0; i < N; i + +)
for(int \ j = 0; j < M; j + +)
if(X[N][j]! = b[j])
if(X[i]/M]! = a[i])
if(X[i][j] < 0)
if(Cmin = -1)
Cmin = C[i][j];
im = i;
jm = j;
}
else
if(C[i][j]<Cmin)</pre>
Cmin = C[i][j];
im = i;
im = i:
X[im][jm] = \min(a[im]-X[im][M], b[jm]-X[N][jm]);
X[N][jm] = X[N][jm] + X[im][jm];
X[im][M] = X[im][M] + X[im][jm];
Sij = Sij + X[im][jm];
}while(Sij<max(Sa, Sb));</pre>
```

Рис. 2. Код программы. Построение начального опорного плана методом минимального элемента.

Максимальное число шагов предлагаемого алгоритма равно n+m-1. Минимальное число шагов $]\frac{n+m-1}{2}[$, т.е. целая часть от $\frac{n+m-1}{2}$ плюс 1.

Опишем теперь алгоритм поиска клетки таблицы 1 с минимальной стоимостью перевозки единицы груза.

- 1. Выделяем три ячейки для хранения текущего минимума стоимости перевозки единицы груза и координат этой стоимости: номера строки и номера столбца. В эти три ячейки записываем последовательно значение вектора $(a_1, 1, 1)$.
- 2. В верхней строке таблицы 1 берём вектор $(a_{1,2}, 1, 2)$.
- 3. Проверяем выполнение неравенства $a_{1,1} > a_{1,2}$. Если оно выполняется, то в выде-

ленные три ячейки для хранения текущего минимума стоимости перевозки единицы груза и координат этой стоимости записываем последовательно значение вектора $(a_{1,2},\ 1,2)$. Если оно не выполняется, то в выделенных ячейках ничего не изменяется.

- 4. Далее п. 3 выполняется для всех оставшихся стоимостей первой строки.
- 5. Затем пп. 3 и 4 выполняются для всех последующих строк таблицы 1.

Таким образом, находим клетку таблицы с минимальной стоимостью перевозки единицы груза.

выводы

Проведя ряд опытов, можно убедиться, что построение начального опорного плана с помощью метода минимального

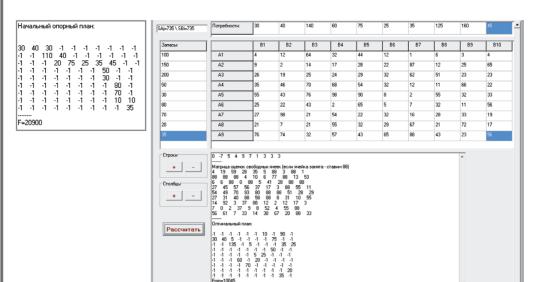
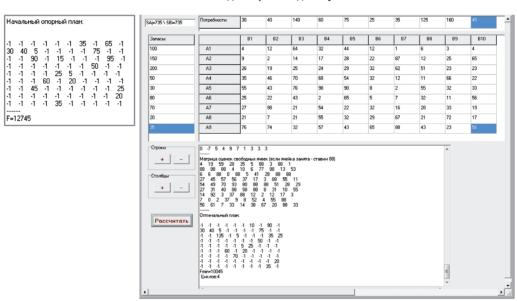


Рис. 3. Метод северо-западного угла.



E = 17/4 = 4.25

Рис. 4. Метод минимального элемента.

элемента даёт большое преимущество при его оптимизации. Исходя из результатов, можно заявить, что благодаря методу минимального элемента количество итераций оптимизации сокращается в два и более раз, в зависимости от сложности задачи.

ЛИТЕРАТУРА

- 1. Ивницкий В. А. Лекции по математическим методам транспортной логистики.— М.: МИИТ, 2015.— 336 с.
- 2. Данциг Дж. Б. Линейное программирование, его обобщения и применения: Пер. с англ. М.: Прогресс, 1966. 600 с.
- 3. Кравцов М. К. К вопросу понижения размерности транспортной задачи // Известия АН БССР: Серия физ.-мат. наук.— 1973.— № 2.— С. 59—62.

Координаты авторов: **Ивницкий В. А.** – ivnitsky.viktor@vniizht.ru, **Макаренко А. А.** – dronskiy95@yandex.ru.

Статья поступила в редакцию 27.10.2016, актуализирована 30.11.2016, принята к публикации 04.03.2017.

• МИР ТРАНСПОРТА, том 15, № 4, С. 34–41 (2017)