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Background. Composites on a polymer basis, 
cons is t ing  of  d iscrete  inc lus ions  and the 
surrounding sol id matrix (binder) f ind wide 
practical application in transport engineering, for 
example, in friction and conjugation nodes. 
Reinforcement of these materials is often made by 
inclusions of non-isometric shape (fibers, disks, 
etc.) by the composite specially oriented in the 
space. Since the technologies for their creation 
are quite expensive, there is a need to develop 
methods for modeling the structure, selecting 
components and predicting their effect on the 
operational physical and mechanical properties of 
the materials being designed [1–4].

To obtain high-strength and heat-resistant 
polymeric tribocomposites, epoxy resins with a 
high content of epoxy groups – ​from 28 to 54 % 
(this is 1,5–2,5 times higher than for the most 
commonly used in the industry domestic resin 
brand ED‑20 or its American counterpart DER‑330) 
[5]. In the same article, the results of studies of 
strength and thermophysical parameters of epoxy 
binders based on triglycidylparaminaminophenol 
resins of the grades of EPAF and EPAF-m (EPAP-m 
resin modif ied with diglycidyl  ether of  DL-
camphoric acid in a ratio of 60: 40) are presented. 
The content of epoxy groups in EPAP is 38 %, and 
in EPAP-m  – ​30 %. It was also shown in [5] that 
cured polymers on the basis of the investigated 
resins reach the maximum values of physico
mechanical parameters for epoxy materials of this 
class described in the literature.

Objective. The objective of the authors is to 
consider  operat ional  e last ic  propert ies  of 
chaotically reinforced tribocomposites.

Methods. The authors use general scientific 
a n d  e n g i n e e r i n g  m e t h o d s ,  m a t h e m a t i c a l 
calculations, comparative analysis.

Results.
Statement of the problem and construction 

of the model
In this paper, the problem of predicting the 

operational elastic properties of tribocomposites 
based on epoxy resins with a high content of epoxy 
groups with antifriction dispersed additives and 
chaotically distributed in the space material by 
chopped short fibers is solved. The solution of this 
problem is based on the calculation of their 
effective (operational) elastic properties [2, 4, 6]. 
These properties are determined by means of the 
fourth-rank tensor c* («*» here and further 
indicates that the effective characteristics of the 

composites are considered), which connects the 
mean values of the stresses 〈σ

i j
(r)〉  and the 

deformations 〈ε
kl

(r)〉 in the material:
〈σ

ij
(r)〉 = (c*)

ijkl
 〈ε

kl
(r)〉, i, j, k, l = 1, 2, 3, 	  (1)

where r  – ​radius vector of the random point of the 
medium, the angle brackets here and below determine 
the averaging procedure. We note that for a 
multicomponent composite, if the ergodicity condition 
is satisfied, averaging over the volume (for each 
component of it) can be used [6]. Then the averaging 
operation over the entire volume of the material for 
some random variable a(r) reduces to summation:

〈sa(r)〉 = S
s

V
s
 〈a

s
(r)〉,	 (2)

where V
s
 – ​volume concentration of the s-th type 

c o m p o n e n t ,  a n d  a
s
( r )   –  ​r a n d o m  v a r i a b l e 

corresponding to the specified component,

S
s

V
s
 = 1.

To carry out a correct analysis of effective 
elastic properties of composites, allowing for 
in teract ion  of  e lements  of  heterogenei ty, 
composition, shape, orientation and concentration 
of components, it  is necessary to solve the 
equilibrium equations for an elastic inhomogeneous 
medium. However, in general case it is not possible 
to obtain a relation for numerical calculations of 
the tensor of the effective elastic moduli c*. 
Therefore, various approximations are used to 
calculate it. One of these approximations, taking 
into account the factors enumerated above, is the 
generalized singular approximation of the theory 
of random fields [6]. It uses only the singular 
component of the Green’s tensor of equilibrium 
equations, depending only on the Dirac delta 
function, and also introduces a homogeneous 
comparison body which material constants enter 
the final expression for computing c*. The physical 
meaning of the generalized singular approximation 
is the assumption that the fields of stress and 
strains are homogeneous within the element of 
inhomogeneity. In this case, the expression for c* 
in (1) has the following form (the indices are 
omitted) [6]:

c* = 〈c(r)(I – ​g(r)c″(r)) –1〉 〈(I – ​g(r)c″(r)) –1〉–1, 	 (3)

where I  – ​unit tensor of the fourth rank; c(r)  – ​
elastic modulus tensor; two dashes denote the 
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ABSTRACT
The problem of predicting the operational elastic 

properties of composites based on binders with a 
high content of epoxy groups (the grade of EPAF and 
its modification), chaotically reinforced with short 
polyimide (or glass) fibers with antifriction disperse 

additives of polytetrafluoroethylene was solved. 
Numerical model calculations of the effective elastic 
characteristics (Young’s modulus and Poisson’s 
ratio) of these tribocomposites were made taking into 
account changes in the concentrations of their 
components.
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When constructing a model for predicting the 
effective elastic properties of the materials in 
quest ion,  we wi l l  base our analysis  on the 
representation of their structure in the form of 
statistically homogeneous matrix composites. 
Reinforcement of composites is made by inclusions 
in the form of spheres of the same radius R and in 
the form of elongated ellipsoids of revolution (l

1
, l

2
 

and l
3
 – ​semi-axes of these ellipsoids, the largest 

of which is of length L). In this case, the ellipsoids 
are oriented with their larger semiaxis in the space 
of the composite in seven different directions 
(relative to the laboratory coordinate system). 
Namely, parallel to the coordinate axes (three 
directions) and parallel to the straight lines, 
forming equal angles with all coordinate axes (four 
directions). In addition, we will assume that the 
model composites consist of isotropic components 
with volume concentrations V

1
, V

2 
and V

3
, where 

the index «1» refers to PTFE, the index «2» refers 
to fibers (ARIMID or AFG), and «3» refers to binding 
agent (EPAF, EPAF-m or ED‑20).

Taking into account (2), the calculated relation 
(3) for the elastic modulus tensor c* takes the 
following form:

( )( )

( )( )

1
с

1
1

с  .

s s s s
s

s s s
s

c V c I g c c

V I g c c

−
∗

−
−

 
= − − 

 

 
− − 

 

∑

∑



  	  (5)

In formula (5), c
s
 and cc are the elastic moduli 

tensors of the s-th component of the composite 
a n d  t h e  h o m o g e n e o u s  r e f e r e n c e  b o d y, 
respectively; g

s
 is the tensor g(r) of the s-th 

component of the composite, calculated from the 
relation (4). In this case, g

1
 corresponds to 

spherical inclusions (l
1
 = l

2
 = l

3
 = R = 1); g

2
 

corresponds to ellipsoidal inclusions (fibers) 
oriented with respect to the coordinate axes along 
the seven directions indicated above, with the main 
semiaxis L = 50 and the remaining semiaxes equal 
to 1; g

3
 refers to the binder (in calculating g

3
 it was 

assumed that l
1
 = l

2
 = l

3
 = 1). We will also assume 

that the volмume contents of the ellipsoidal 
inclusions in each of the seven indicated directions 
are the same and are equal to V

2 
/7.

To carry out model calculations in operations 
on tensors the matrix form of their recording was 
used [6]. The nonzero elements c

ij
 (i, j = 1, 2, …, 

6) of the symmetric matrix of the elastic modulus 
tensor c for an isotropic material are expressed in 
terms of the Young’s modulus E and Poisson’s ratio 
ν as follows:

11 22 33

(1 )

(1 )(1 2 )

E
c c c

n
n n

−
= = =

+ −
; 

Table 1
Physico-mechanical properties of tribocomposite components [1, 5, 7–10]

Type of component Material of component E, GPa ν ρ, g/cm3

1 PTFE 0,15 0,33 2,20

2 ARIMID
AFG

120,0
76,2

0,36
0,22

1,45
2,54

3 EPAF
EPAF-m
ED‑20

5,4
4,6
3,8

0,46
0,42
0,39

1,30
1,24
1,18

d i f f e r e n c e  c″ ( r )  =  c ( r )   –  ​c c b e t w e e n  t h e 
corresponding parameters of inhomogeneous 
medium and homogeneous comparison body 
(characteristics of the comparison body are 
denoted below by the superscript «с»); g(r)  – ​
integral of the singular component of the second 
derivative of the Green’s tensor of the equilibrium 
equations, which is a fourth-rank tensor. To 
calculate the components g

ijkl
 of the tensor g(r), it 

is first necessary to perform calculations of the 
components aiklj of the fourth-rank tensor A, and 
then perform a symmetrization operation in aiklj with 
respect to two pairs of indices (i, j and k, l) [6]. The 
components aiklj of the tensor A are calculated 
using the following relation:

11
( )

4iklj k j ila n n t d
π

−= − W∫ , 	  (4)

where dΩ = sinθdθdϕ – ​solid angle element in the 
spherical coordinate system, (t –1)

 il
 – ​elements of 

the matrix inverse to the matrix T with elements 
t

il
 = (cc)

iklj
 n

k
 n

j
,  а  n

k
 and n

j
 (k, j  = 1, 2, 3)  – ​

components of the exterior normal vector to the 
inclusion surface. For ellipsoidal inclusions with 
principal semiaxes l

1
, l

2
 and l

3
, the components of 

the normal vector are determined by the relations
n

1
 = ( l

1
)  –1 s inθ  cosϕ ,  n

2
 =  ( l

2
)  –1 s inθ  s inϕ , 

n
3
 = (l

3
) –1 cosθ.

Equation (3) can be used to calculate the 
effective characteristics of statistically homogeneous 
matrix composites with ellipsoidal inclusions oriented 
relative to each other [2].

Carrying out model calculations
Composites with inclusions of two types are 

then considered. The first type includes dispersed 
inclusions of polytetrafluoroethylene (PTFE), 
evenly distributed in the space of the composite 
and performing an antifriction role. The second 
type includes chopped short fibers randomly 
distributed in the space of the composite and 
performing the function of hardening it. Separate 
study is carried out for composites filled with: a) 
high-heat-resistant polyimide fibers (ARIMID 
brand, TU2272–034–17277875–2003, manufactu
red by LLC LIRSOT, Mytischi); b) fibers of alkali-
free glass (AFG). As a matrix – ​a component of the 
third type – ​epoxy binders of EPAF, EPAF-m and 
ED‑20 are considered. The binder ED‑20 is 
considered for carrying out a comparative analysis 
of the operational elastic characteristics of 
tribocomposites based on it and on the basis of 
EPAP and EPAF-m resins. The physical and 
m e c h a n i c a l  p r o p e r t i e s  o f  t r i b o c o m p o s i t e 
components are given in Table 1 (E  – ​Young’s 
modulus for compression, ν  – ​Poisson’s ratio, 
ρ – ​density).
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44 55 66 2(1 )

E
c c c

n
= = =

+
; 

12 21 13 (1 )(1 2 )

E
c c c

n
n n

= = =
+ −

.

In calculating the elastic characteristics of a 
homogeneous compar ison body,  the sel f-
consistency method was used [6; 11]. To this end, 
an iterative procedure was organized in which the 
values of the elastic modulus tensor (in the matrix 
form of recording) obtained at the previous step 
of the iteration were taken as parameters cc of the 
compar ison body.  As  in i t ia l  v a lues  of  the 
parameters of the comparison body, the elastic 
characteristics obtained in the Hill approximation 
were taken, i. e. arithmetic mean values obtained 
in the Reuss and Voigt approximations [6; 11]. The 
exit from the iterative procedure was performed 
when the maximum difference between the cc 
modules was less than 0,01.

The results of all model calculations are given 
below with respect to the percentage concentrations 
m

s
 (s  = 1, 2, 3) of the heterogeneity elements 

according to mass, associated with the volume 
concentrations and densities of the composite 
components using formula

100s s
s

i i
i

V
m

V

ρ
ρ

= ⋅
∑ , mas. %.

Numerical simulation based on the relation (5) 
for different values of the inclusions concentrations 
has shown that the composites considered in this 
work have an isotropy of effective elastic properties 
[6]. Thus, the calculations of the tensor of the 
effective moduli of elasticity c* fully confirmed 
those assumptions that could be advanced, 
starting from the structure of the materials under 
consideration.

Pic. 1 and 2 show the results of numerical 
calculations of the values of the operational elastic 
characteristics – the Young’s modulus E* and the 
Poisson’s ratio ν*  – ​model tribocomposites from 
changes in the percentage contents of the fibers 
(ARIMID or AFG) and dispersed PTFE inclusions.

Pic. 1. Change in operational elastic properties of tribocomposites with an increase in the percentage of m
2
 

fibers (ARIMID or AFG) and fixed concentration m
1
 = 10 % PTFE:

1 – ​EPAF, 2 – ​EPAF-m, 3 – ​ED‑20.

Pic. 2. Change in operational elastic properties of tribocomposites with increasing percentage 
of m

1
 of PTFE and fixed concentration m

2
 = 50 % of fibers (ARIMID or AFG):

1 – ​EPAF, 2 – ​EPAF-m, 3 – ​ED‑20. 

Pic. 1 and 2 show the results of numerical calculations of the values of the 

operational elastic characteristics– the Young’s modulus E* and the Poisson’s ratio ν* –

model tribocomposites from changes in the percentage contents of the fibers (ARIMID 

or AFG) and dispersed PTFE inclusions.

The operational elastic characteristics E*and ν*were calculated through the 

elements of the matrix c* using the following formulas [6]:
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operational elastic characteristics– the Young’s modulus E* and the Poisson’s ratio ν* –

model tribocomposites from changes in the percentage contents of the fibers (ARIMID 

or AFG) and dispersed PTFE inclusions.

The operational elastic characteristics E*and ν*were calculated through the 

elements of the matrix c* using the following formulas [6]:
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Pic. 1. Change in operational elastic properties of tribocomposites with an increase in 

the percentage of m2 fibers (ARIMID or AFG) and fixed concentration m1 = 10 %

PTFE:

1 – EPAF, 2 – EPAF-m, 3 – ED-20.

a)

b)

Pic. 2. Change in operational elastic properties of tribocomposites with increasing 

percentage of m1 of PTFE and fixed concentration m2 = 50 % of fibers (ARIMID or 

AFG):

1 – EPAF, 2 – EPAF-m, 3 – ED-20.
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the percentage of m2 fibers (ARIMID or AFG) and fixed concentration m1 = 10 %

PTFE:

1 – EPAF, 2 – EPAF-m, 3 – ED-20.
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Pic. 2. Change in operational elastic properties of tribocomposites with increasing 

percentage of m1 of PTFE and fixed concentration m2 = 50 % of fibers (ARIMID or 

AFG):

1 – EPAF, 2 – EPAF-m, 3 – ED-20.

GPa

ARIMID
AFG

ARIMID
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The operational elastic characteristics E*and 

ν* were calculated through the elements of the 
matrix c* using the following formulas [6]:

44 12 44

12 44

(3 2 )c c c
E

c c

∗ ∗ ∗
∗

∗ ∗

+
=

+
; 

12

12 442( )

c

c c
n

∗
∗

∗ ∗=
+

.

Conclusion. On the basis of the conducted 
researches it is possible to conclude the following.

1. Application of resins with a high content of 
epoxy groups as binders leads to a significant 
improvement in operational elastic properties of 
tribocomposites in comparison with materials 
based on other polymer binders (see Pic. 1, 2 and 
[4]).

2. An increase in concentration of fibers at a 
fixed content of PTFE inclusions leads to an 
increase in the E* values, while the character of the 
dependence is nonlinear (Pic. 1a). An increase in 
the concentration of dispersed inclusions of PTFE 
at a fixed fiber content can lead to both a slight 
growth (when using ARIMID fibers) and to a slight 
decrease in the E* values (using AFG fibers). The 
character of the dependence is close to nonlinear 
(Pic. 2a).

3. An increase in concentration of ARIMID 
fibers with a fixed content of PTFE inclusions leads 
to a nonmonotonic change in the values of the 
Poisson’s ratio ν* (Pic. 1b). An increase in the 
percentage content of disperse antifr ict ion 
additives of PTFE at a fixed concentration of 
ARIMID fibers leads to a slight decrease in the 
values of ν* according to a law close to linear 
(Pic. 2b).

4. An increase in concentration of both AFG 
fibers and dispersed antifriction additives of PTFE 
leads to a monotonous decrease in the values of 
the Poisson’s ratio ν* (Pic. 1b, 2b).

5. Since the variation in the percentage of 
fibers (ARIMID or AFG) results in a more significant 
change in operational elastic characteristics of 
t r ibocomposi tes  than the  v ar iat ion  in  the 
concentration of PTFE inclusions, additional 
experimental and theoretical studies are needed 
to optimize the concentration of both PTFE and 
fibers in order to maximize the tribocharacteristics 
of the composites under consideration without 
significant deterioration of their elastic-strength 
indicators.  This is  especial ly  important for 
tribocomposites operating in heavily loaded 
friction nodes.
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