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absTRaCT
The article provides a study on probabiity distribution 

of a random variable at the example of response time to 
enquiry within the data processing center (hereinafter-
DPC), considered as a queuing system. To solve this 
problem the author examines the hypothesis of an 
exponential distribution, uses in the study queuing theory 
and simulation methods. The results obtained provide 
a well-founded guidance to DPC users and ability to 
correlate computed values with existing standards and 
growing needs of information system’s users.

EnglisH summaRY
background. Data Processing Center (DPC) 

functions in the environment of random stream of 
requests for processing and of random time of their 
execution. Studies conducted earlier, allow considering 
DPC as a queuing system (hereinafter-QS) of M/M/1/∞ 
type. This reference designation means a simple input 
stream, exponential service time distribution, one 
processor, infinite input stream, when a probability 
of a new enquiry does not depend on the number of 
enquiries, already existing in the system. Calculating 
DPC response time (time elapsed from the moment of 
the enquiry’s input from external environment) is quite 
consistent with experimental data, that is why search 
for the answer to the question of compliance of DPC 
operations with requirements of standard ITIL [1], should 
be based on a variety of QS models.

Studies on the period of engineering of the first 
man-machine systems, in which people solved their 
problems through dialogue with the machine, show that 
a user has negative emotions if response time exceeds 
2 seconds [2, 3]. DPC standard means that developer 
should negotiate allowable response time with client of 
the system [1].

Objective. The objective of the author is to study 
application of the law of probability distribution of a 
random variable at the example of DPC response time 
using hypothesis of exponential distribution.

methods. Due to the fact that DPC response 
time is a random variable, it can be evaluated using a 
certain model only as a mean value. Thus in order to 
obtain a probability that response time will exceed the 
predetermined value of maximum allowable time of 
reaction, provided by standards, it is necessary to use 
methods of queuing theory and simulation. If model 
M/M/1 / ∞ is applied, then the probability distribution 
of a random variable (life time of enquiry within the 
system, defined as the sum of random queuing time and 
of service proceeding time itself) can be applied based 
on the considerations given below.

Results. If a request comes in QS and finds it free 
with probability p

0
, then stay period in the system is a 

random variable having an exponential distribution with 
μ-parameter of service time since there is processing 
of the request.

If a request comes in QS and finds another input 
service request, already existing in the system,   with 
probability p

1
, then stay period in the system is a random 

variable, which is a sum of two exponential variables with 
μ-parameter of service time. The first exponential value 
is a remainder of time necessary to finish the proceeding 
of the request which existed in the system at the moment 

of the input of a new request, the second exponential 
value is linked to processing of a new request. According 
to probability theory it is known [4] that in case of 
exponential distribution, a remainder of afterservice 
time has the same exponential distribution with the same 
parameter μ. Consequently, time distribution of stay in 
the QS is Erlang distribution of the 2nd order [5].

If a request comes in the QS and finds that there 
are i requests in it (one for service, (i-1) in the queue) 
with probability p

i
, then stay period in the system is a 

random variable, which is the sum (i+1) of exponentially 
distributed random variables with μ-parameter of service 
time. The first one is a remainder of afterservice time 
of a request that was at processing at the time of input 
of new request in the system, the rest are linked with 
servicing of requests selected from the queue, and of 
a new request. Afterservice and service of requests 
received from the queue are random variables having 
an exponential distribution with the same parameter μ. 
Consequently, time distribution of stay in the QS is in this 
case is Erlang distribution of (i+1) order.

Erlang distribution with order v= (i+1) and parameter 
μ has density of probability distribution [5]:
f (t) = μ (μt) v-1e-μt/ (v-1)!, t≥0, v>0.  (1)

And that means that density of probability distribution 
of a random variable (stay period of a request in QS) 
f

reaction
 (t) is defined by formula:

1
1

1

( ) ( ) / ( 1)!, 0.t
reaction i

i

f t p t e tν µµ µ ν
∞

− −
−

=

= − ≥∑   (2)

Summation is made from 1 to infinity, because 
QS M/M/1/∞ receives an infinite input stream, thus 
theoretically there is a non-zero probability that there is 
an arbitrarily large number of requests.

Probabilities p
i
, i=0,1,2,3,… are calculated by 

formulas given in queuing theory [5]. When a request 
comes in a system, we should talk about conditional 
probabilities ip , i=0,1,2,3,… and the situation that the 

request will meet there i requests at the moment of its 
input. In case of closed QS these conditional probabilities 
differ from the stationary probabilities of finding the 
system in state i. However, as it is shown in [6], for 
M/M/1/∞ probabilities ip coincide with stationary 

probabilities of finding QS in state i.
It is easy to see that it is quite difficult to use 

cumbersome formula (2) for engineering calculations 
of a probability that a random variable exceeds a 
predetermined value, since it is necessary to perform 
numerical integration. Therefore we shall use the 
methods of simulation (statistical modelling) [7]. 
Namely, we take a general-purpose simulation system 
of discrete complex systems GPSS [8].

QS model in GPSS language looks relatively simple 
and it is shown in Pic. 1.

Average query time in DPC mainframe is 0,0189 s 
for an option with performance of 5939 Mips. The model 
takes 0,1 ms as a time unit, so the first parameter of the 
block GENERATE, simulating simple request stream in 
the QS, is equal to 1890 model time units, and the first 
parameter of the block ADVANCE, simulating service 
time, is equal to 189 time units. With these parameters, 
load factor of a processor QS1 theoretically should be 
equal to 0,1.
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The simulation results show that the experimentally 
obtained (by simulation) load of a device FACILITY/
UTIL is 0,099, that is almost equal to the theoretical 
one.

Histogram of a random variable (stay period of 
request in the system) is described by lines:

The average stay period in the system is 
209,869, root-mean-square deviation (square root 
of dispersion) of this variable is 206,684. Thus, the 
coefficient of variation of a random variable is almost 
equal to 1, that allows (taking into account histogram 
frequency) making an assumption that the law of 
distribution of a random variable (stay period in QS) 
is exponential.

Testing the hypothesis of an exponential 
distribution with the help of χ 2 (a square of criterion) 
showed that the hypothesis can be accepted with 
confidence probabiity of 0,62269368. This result was 
expected, since the main contribution to the random 
variable (DPS response time in our case) is made by 
the first summand to the formula (2), while average 
number of requests in the system (simulation results) 
is 0,1, and average time in the system is 209,869 that 
is slightly different from pure service time.

Results are presented graphically in Pic. 2. 
Rectangles represent experimental histogram 
obtained by simulation. Curve of probability 
distribution density is shown dotted. Model time units 
are indicated on x-axis.

DPC simulation as of a QS at load level of 
0,1 made it possible to receive probabilities that 
response time will be less than a certain value T 
(see Table 1).

The results of optimization of DPC mode showed 
that the DPC operates at a load factor of 0,225537 
(Table 2). Simulation at 838 model time units gave 
average time in the system of 248,047; root-mean-
square deviation of this value is 247,601. Thus, we 

Pic. 1. GPSS-model to receive histogram of DPC 
response time.

* MODEL OF OPEN- END Queuing system type M/M/1/ in�nity
* 1 MODEL TIME UNIT = 0.1 MILLISECOND OF REAL TIME
SIMULATE

EXPON FUNCTION   RN1,C24  EXPONENTIAL DISTRIBUTION ( AVERAGE =1)
0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/
0.6,.915 /.7,1.2/.75,1.38/.8,1.6/.84,1.83/.88,2.12/
0.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2/.97,3.5/
0.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999,7/.9997,8.0

XTIME TABLE      M1,0,1000,50
INPUTGENERATE 1890, FN$EXPON POISSON INPUT STREM
QUEUE SYSTEM MEASURING TIME IN THE SYSTEM
* SIMULATE SERVICE IN QS

QUEUE      PHASE1   MEASURING TIME IN PHASE 1
QUEUE      LINE1    MEASURING TIME IN QUEUE 1
SEIZE      CMO1     OCCUPANCY OF ONE SERVICE CHANNEL IN QS1
DEPART     LINE1    END OF TIME MEASURING IN QUEUE 1

OBSLU ADVANCE    189,FN$EXPON  SERVICE SIMULATION IN PHASE 1
RELEASE    CMO1  RELEASE OF ONE SERVICE CHANNEL IN QS1
DEPART     PHASE1   END OF TIME MEASURING IN PHASE 1
DEPART     SYSTEM   END OF TIME MEASURING IN THE SYSTEM

TABULATE XTIME HISTOGRAM OF TOTAL TIME
TERMINATE 1

START      10000,NP   MODEL OVERCLOCKING
RESET                 RESET OF ACCUMULATED STATISTICS
START      10000     BASIC SIMULATION
CLEAR

OBSLU ADVA NCE    900,FN$EXPON  SERVICE SIMULATION IN PHASE 1
START      10000,NP   MODEL OVERCLOCKING
RESET                 RESET OF ACCUMULATED STATISTICS
START      10000     BASIC SIMULATION
END

Pic. 2. Load is 0,1. Histogram and exponential 
distribution.

Table 1
Probabilities that DPC response time will not 

be more than T, with load factor 0,1
Load factor Border, T Probability

0,1 < 0,0100 s. 0,3443

< 0,0200 s. 0,5647

< 0,0300 s. 0,7145

< 0,0400 s. 0,8114

< 0,0500 s. 0,8770

< 0,0600 s. 0,9212

< 0,0700 s. 0,9462

< 0,0800 s. 0,9647

< 0,0900 s. 0,9763

< 0,1000 s. 0,9834

< 0,1100 s. 0,9897

< 0,1200 s. 0,9930

< 0,1300 s. 0,9959

< 0,1400 s. 0,9975

< 0,1500 s. 0,9986

< 0,1700 s. 0,9994

Table 2
Probabilities that DPC response time will not 

be more than T at load factor 0,225537
Load factor Border, T Probability

0,225537 < 0,0100 s. 0,3355

< 0,0200 s. 0,5516

< 0,0300 s. 0,7030

< 0,0400 s. 0,7990

< 0,0500 s. 0,8675

< 0,0600 s. 0,9148

< 0,0700 s. 0,9402

< 0,0800 s. 0,9600

< 0,0900 s. 0,9716

< 0,1000 s. 0,9802

< 0,1100 s. 0,9866

< 0,1200 s. 0,9911

< 0,1300 s. 0,9944

< 0,1400 s. 0,9968

< 0,1500 s. 0,9981

< 0,1600 s. 0,9993
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obtain a distribution close to exponential. The results 
are presented in graphical form in Pic. 3, probabilities 
that response time will be less than a certain value T 
are shown in Table 2.

At optimal DPC mode service time for almost all 
requests will not exceed 0,12 s.

High (0,9) load of DPC was simulated. Average 
stay period in the system was 1578, 7173 model 
time units, root-mean-square deviation – 1451,0482 
model t ime units. The results of computing 
a probability that response time does not exceed 
a certain border are presented in Table 3.

Graph of probability distribution density of DPC 
response time at load 0, 9 is shown in Pic. 4.

The hypothesis was tested that a random 
variable (stay period of a request in the QS) has 
gamma distribution with density:
f (t) = μ (μt) v-1e-μt/Г (v-1), t≥0,  (4)
where Г (v) – gamma-function:

1

0

( ) .te t dtνν
∞

− −Γ = ∫   (5)

For integer values Г (v) there is a simple factorial 
(v – 1).

Conclusion. Studies have shown that in case of 
mainframe with performance 5939 Mips DPC response 
time will not exceed 0,64 seconds, even at a very high 
load (0,9).

Pic. 3. Load is 0,225537. Histogram and exponential 
distribution.

Table 3
Probabilities that DPC response time will not 

be more than T at load factor 0,9
Load factor Border, T Probability

0,9 < 0,0400 s. 0,2295

< 0,0800 s. 0,3942

< 0,1200 s. 0,5194

< 0,1600 s. 0,6093

< 0,2000 s. 0,6929

< 0,2400 s. 0,7566

< 0,2800 s. 0,8193

< 0,3200 s. 0,8633

< 0,3600 s. 0,8977

< 0,4000 s. 0,9230

< 0,4400 s. 0,9423

< 0,4800 s. 0,9610

< 0,5200 s. 0,9739

< 0,5600 s. 0,9824

< 0,6000 s. 0,9877

< 0,6400 s. 0,9913

< 0,6800 s. 0,9932

< 0,7200 s. 0,9953

< 0,7600 s. 0,9978

< 0,8000 s. 0,9992

Pic. 4. Load is 0, 9. Histogram and gamma 
distribution. The order of distribution is 1, 18370930, 
parameter 1/µ = 1333, 70355714 model time units.
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