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absTRaCT
This article proposes an analytical method of 

assessment of track’s vibration level, based on 
the spectral decomposition of functions of sleeper 
deflections under the influence of passing axles of 
rolling stock. Train is considered to be formed from 
vehicles of the same type and of unlimited length. 
Vibrations are studied within a stable system of 
coordinated, related to the ground, for one sleeper 
during the passage of a train of unlimited length 
through track’s cross-section. The computational 
scheme takes into account vibration damping of a 
track, considered as an infinitely long beam on a 
viscoelastic foundation. The algorithm and the results 
of numerical calculation of track’s vibration are given 
at speeds in the area of conventionally critical speed 
(the speed at which the model that does not take 
into account energy dissipation on the way predicts 
vibrations of unrestricted amplitude).

It is shown that when the train’s speed is equal 
to conditionally critical (of about 500–600 km / 
h), the track’s vibrations reach their peak in the 
whole frequency range. Results are obtained for 
a wide frequency range from 16 to 32000 Hz in 12 
octave bands in decibel scale. Methods, outlined 
in this article, make it possible to solve problems of 
accumulation of residual track’s deformations, as well 
as give direction for solving problems associated with 
the vibrations of the roadbed.

EnglisH summaRY
background. Speed of high-speed transport is 

continuously increasing. Relatively recently speed of 
300–350 km / h has been considered as very high, 
but now the question is how to achieve the level of 
400–450 km / h on Russian railways. In this regard, 
the task arises to evaluate track’s vibrations at such 
or even speeds.

Objective. The objective of the authors is 
to propose a new evaluation method of track’s 
vibrations, which occur in high-speed traffic.

methods. The authors use mathematical method, 
analysis and scientific description.

Results. Article [1] is devoted to problems of 
analytical evaluation of track’s vibration level under 
passing trains, formed from vehicles of the same type. 
To determine the shape of the curve of a rail’s deflection 
a model was used in which, to simplify the solution, 
energy dissipation was not taken into consideration. 
Solutions obtained in this case are sufficiently accurate 
at speeds of up to 300–350 km / h. At speeds of over 
500 km / h and disregarding damping a system may 
become unstable, and solutions become unbounded. 
In fact, the energy in the system always dissipates. In 
the vicinity of the speed, which is critical in the absence 
of damping (conditionally critical), we should expect 
increased dynamic effects.

It is known that in France for high-speed line speed 
of 574 km / h was implemented, which, according to 
the authors, is higher than conventionally critical.

In general, with account for damping the deflection 
of a fixed track’s point when singular vertical force Q = 

1 passes through the cross section of a track with 
speed V is described by the differential equation [2]:
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which is valid everywhere except at the point of 
application of force Q = 1, where there is discontinuity 
of the third derivative resulting from the vertical 
deflection of a rail.

In formula (1) there are following notations:
Е – elasticity modulus of rail steel;
I y

o −  inertia moment of a rail with regard to the 

main cross horizontal axis y;
Z p

o −  vertical deflection of a rail;

u – distance of driving force from considered fixed 
cross- section of a rail;

N0 – axial force in a rail;
mz

o −  distributed along the length reduced mass 

of a rail and a foundation at vertical vibrations of a 
track;

fz
o −  distributed along the length vibration 

damping of a track at vertical vibrations;
U z

o −  elasticity modulus of a rail base in the vertical 

plane.
The characteristic equation of the differential 

equation (1) takes a form:
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Since all coefficients of the equation (2) are valid, 
it has two pairs of complex conjugate roots 
r r r r1 3 2 4= =, .  Applying Hurwitz criterion to the 

equation (2), it can be proved that its two roots 
represent negative real part, while the other two 
represent positive real part.

We assume for definiteness

Re r Re r Re r Re r; ; ; .1 3 2 40 0 0 0< < > >

In the cross-section under the driving force rail’s 
deflection, angular deflection and bending moment 
are continuous functions of the abscissa u , and the 

shear force is discontinuous with a jump equal to the 
external unit force Q = 1. Given these boundary 
conditions, the solution of equation (1) takes the form
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where α α β β1 1 2 2 1 1 1 2= = = =Re r Re r Imr Imr; ; ; .
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If at time t = 0 driving unit force Q = 1 is located 
in cross-section over the considered cross-sleeper, 
rail’s deflection in this cross-section at time t is 
determined by following expression:
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In this case evident relation u  =–Vt was used. In 

a particular case, when there is no energy dissipation 
in the system ( fz

o = 0)  characteristic equation (2) 
degenerates into a biquadratic. Then deflection of a 
fixed rail point under the passage of a unit vertical 
force Q = 1 is determined by the expression:
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Track’s vibrations at rail’s deflection under the 
influence of unit force Q = 1 are considered in article 
[1]. As already mentioned, solutions obtained using 
the formula (5) are sufficiently accurate at speeds of 
trains of 300–350 km / h.

At high speeds it is necessary to consider that in 
the absence of vibration damping in the system 
( fz

o = 0)  and speed

V
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z
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system becomes unstable.
Indeed, in this case, we have α=0, and solution 

(5) becomes infinite. We define the Fourier spectrum 
of the function (4). In contrast to the function (5) it 
is asymmetric with respect to the point t = 0. This 
circumstance provides complexity to the Fourier 
spectrum; it includes not only the cosine transform, 
but the sine-Fourier transform of function (4).

We first calculate the cosine Fourier transform of 
function (4). Obviously, we have
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Changing in the first and second integrals a 
variable t into –t and performing integration, we obtain 
the following result:
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We now calculate the sine-Fourier transform of 
function (4):
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Changing in the first and second integrals t into –t 
and integrating, we obtain:
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Complex Fourier spectrum of the function (4) 
has the form

( ) ( ) ( )℃Ф z zc zsФ iФω ω ω= +
  (8)

where i = −1  – imaginary unit.

We define the density of spectrum of process square
Z tp

o ( ) , appearing on the way under the passage of a 
random force Q (t), which mean square is

,Q Q Q
2 2 2= +σ  (9)

where Q  – mean value of force Q (t); σQ −  RMS 

deviation of force’s value from the mean value Q.

Parameters Q and Qσ  can be determined by 

considering processes in the mobile, related to the 
vehicle’s coordinate system [1].

With account for formulas (8) and (9) the spectral 
density of a square of rail’s deflection reduces to the 
expression
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z z z zc zs℃S w = Q w w = Q w + w ,℃Ф Ф Ф Ф〈 〉  (10)

where ( )Ф ℃z ω – function, complex conjugate to 

function Ф
z 
(ω).

In expression (10) value Q2  is determined by 

formula (9), and functions Ф
zc 

(ω) and Ф
zs 

(ω) – 
respectively by formulas (6) and (7).

Assume that when vehicle passes through a 
fixed track’s cross-section all its axles transfer 
vertical forces to the rails with the same statistical 
characteristics:
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where j is an axis number of a vehicle; N – total number 
of axles in the vehicle.
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In this case, rail’s deflection is determined by the 
sum of deflections resulting from individual forces, 
phase-shifted relative to wheel pair, which is the first 
in the direction of travel (Pic. 1).

In Pic.1 variable x is an abscissa of the current 
cross-section of a rail, calculated from the start of the 
fixed coordinate system.

In the frequency area shift is performed by the 
operator:
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With account for (12) density of spectrum of 
process square Z tp

o ( )  when a single vehicle passes 

through the cross- section of a rail is:

,*S W i W i Sz y
oω ω ω ω( ) = ( ) ( ) ( )  (13)

where W iω( )  is a frequency characteristics, complex 

conjugate to the frequency characteristics W iω( ).
If a chain of vehicles passes through rail’s cross-

section, spectrum density of process square Z tp
o ( )  

of rail’s deflection under the train can be determined 
as a superposition of the spectra of rail’s deflections, 
caused by the passage of one vehicle with shifts jT

0
, 

where T
0
 – period, during which a vehicle passes a 

way, equal to its length l:

.T
l

V0 =  (14)

Number j changes from – М to + М when M → ∞.
After appropriate transforms [1], we obtain the 

following expression for the spectral density of the 
process of rail’s deflection under a train formed from 
vehicles of the same type:

( ),*S S nz z
n

ω ω ω δ ω ω( ) = ( ) −
=−∞

∞

∑0 0  (15)

where δ (ω) – Dirac delta function;

ω π π
0

0

2 2
= =

T

V

l
.  (16)

With the expression (15), we can find the mean 
square of the process Z tp

o ( ) :
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Substituting in (17), expression (15) and taking 
into account the properties of the delta function, we 
obtain:
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where dn
2  – dispersion of process Z tp

o ( ) , attributable 

to harmonic n.
Coefficients dn

2  are determined as follows:
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These coefficients fully reflect the dynamics of rail 
base when a train, formed from wagons of the same 
type, passes along the track.

Dispersion of vibration accelerations of a sleeper 
attributable to harmonic n, is written in the form [1]:
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system with the input on the rail’s deflection Z tp
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and output on the sleeper deflection ( )℃℃ o
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with the help of expression [1]
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where C
c
 – stiffness of a clamping unit;

C
ш

 – stiffness of sleeper base;
M

ш 
– half mass of a sleeper;

f
ш 

– vibration damping of a sleeper base.
Level of vibration acceleration of a sleeper is 

determined in octave bands and frequency range
16 ˂ nω

o 
˂ 32000.  (22)

Choice of octaves depends on the speed of a 
vehicle, since frequency of basic tone of vibrations 
ω

o
 is characterized by expression (16).

Harmonic number corresponding to the lower of 
the frequencies:

,n1
0

16
1= +

ω
 (23)

here  is a sign of the integer part of the fraction 
behind this sign.

It can be seen that the value n
1
 is simultaneously a 

number n (1) of the first harmonic of the first frequency 
octave bands 16 ˂ ω ˂ 32, and value n (1) – the first 
member of geometric progression
n (m) = n (1). 2m-1,  (24)
where n (m) – number of the first harmonic of an octave 
band m.

In this task there are 11 octave bands.
Vibration accelerations of sleepers in frequency 

octave band shall be expressed in logarithmic units 
relative to the gravitational acceleration g = 9,81 m/s 2:
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In expression (25) value 
ш

2

z n
d ⋅⋅  is determined by 

formula (20). Value 
( 1)
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=
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∑  is a sum of dispersions 

of all harmonics, which are located in frequency 
octave band m.

Below there are some results of calculations 
of track’s vibration under the influence of high-
speed trains. Due to the fact that we do not know its 
parameters at a speed of 400 km / h or more, and 
the design parameters of track superstructure when 
such a train passes, calculations are made for the 
parameters of the train «Sapsan» and track design 
with ballast and concrete sleepers.

In the calculation scheme it is adopted, that 
train is formed from vehicles, the number of which 
is unlimited.

Initial parameters of a vehicle are:
• base of a bogie b

т
 = 2,6 m;

• base of a car b
в
 = 17,375 m;

• length of the car by an automatic coupler 
(average in a train) l = 24,175 m.

Pic. 1. Movement scheme of axles’ group of a vehicle 
along the rail. 
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Parameters required for the calculation of the 
dispersion dn

2  (Pic. 1):

a
1
 = 0; a

2
 = b

т
 = 2,6 m; a

3
 = b

в
 = 17,375 m; a

4
 = b

в
 

+ b
т
 = 19,975 m.
The mean value of the force transmitted from the 

wheel on the rail:
Q kN= 90 , j = 1, 2, 3, 4.

RMS deviation of a force’s value from the mean 
value σ

Qj 
=14 kN.

Initial parameters of a track:
• elasticity modulus of a rail base U z

o  = 100 MPa;

• moment of inertia of the rail relative to the main 
cross horizontal axis I y

o = 3,54.10–5 m 4;

• elasticity modulus of rail steel Е = 2,1.105 MPa;
• reduced mass of a rail and a rail base distributed 

along the length mz
o  = 1013 kg/m;

• vibration damping of a track at vertical vibrations 
distributed along the length f Pa sz

o = ⋅ ⋅4 5 104, ;

• weight of a sleeper 2М
ш

= 275 kg;
• stiffness of a clamping unit С

с
 = 9.107 N/m;

• stiffness of a rail base С
ш

 = 3.107 N/m;
• vibration damping of a sleeper base f

ш
 = 105 

Ns/m.
Level of vibration accelerations of sleepers 

in decibel scale in frequency octave bands was 

calculated using formulas, given in this article. 
Calculations were performed at speeds of 300, 554 
and 700 km/h. Speed 554 km/h is conditionally 
critical in the absence of vibration damping of the 
track (f

ш
 = 0).

As it can be seen from Pic. 2, when a train moves 
at a speed, which is equal to conditionally critical 
(V = 554 km / h), vibration accelerations of a sleeper 
reach a maximum in the whole frequency range of 
track’s vibrations. In the frequency range of 64–250 
Hz level of vibration accelerations of a sleeper comes 
to 22–25 dB.

With further increase in train’s speed level of 
vibration accelerations of a track decreases at all 
frequencies, to the greatest extent – in the low 
frequency range (less than 64 Hz).

Conclusions.
1. The article presents the algorithm and results of 

numerical calculation of track’s vibrations at speeds 
in the area of   conditionally critical speed (when the 
model, not considering energy dissipation on the 
way, predicts emergence of vibrations of indefinitely 
large amplitude).

2. When a train moves at a speed equal to 
conventionally critical, track’s vibrations reach 
their maximum in the entire frequency range. 
Further increase in speed implies reducing vibration 
acceleration at all frequencies.

Pic. 2. Levels of vibration accelerations of a sleeper when axial force is No=106N and vibration damping is 
f Pa sz

o = ⋅ ⋅4 5 104,  (1 – speed 300 km/h; 2 – speed 554 km/h; 3 – speed 700 km/h).
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