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Background. Artif icial  structures of the 
transport industry in terms of strength, reliability, 
stability, economy of service and service life must 
meet the current technical requirements and ensure 
handling of existing and future loads with the 
established speeds.

Numerous cases of deformation of artificial 
structures with increasing axial loads and speeds 
of movement pose the task of timely revealing the 
nature and causes of defects in the elements of the 
structure. This is due to the fact that the destruction 
and accidents that occur due to deformation 
processes cause huge economic, social and 
environmental damage incomparable with the 
means spent on protective measures.

The conditions for carrying train loads along 
bridges are established by comparing the classes of 
elements of span structures specified in the guidelines 
for determining the load capacity of bridges [1–3], 
with the classes of handled rolling stock given in [4]. 
The span structures in determining their load capacity 
are tested in accordance with SNiP [5], if it is 
necessary to clarify the actual stress state of the 
elements, as well as in the presence of defects and 
damages, the effect of which on load-carrying 
capacity is difficult to take into account theoretically.

Objective. The objective of the author is to 
consider deformations of beam spans of bridges 
and its measurements.

Methods. The author uses general scientific 
a n d  e n g i n e e r i n g  m e t h o d s ,  m a t h e m a t i c a l 
calculation, graph construction.

Results. In 2013 in Kazakh Academy of 
Transport and Communications was created a 
research laboratory «Trials of tracks and artificial 
structures (IPiIS)». The need for its creation is 
caused by the acute need of the structural units of 
JSC NC KTZH, responsible for maintenance of the 
infrastructure.

Two years later the laboratory was accredited 
in the accreditation system of the Republic of 
Kazakhstan for compliance with the requirements 
of  ST  RK ISO /  IEC17025–2007 «Genera l 
requirements for the competence of testing and 
c a l i b r a t i o n  l a b o r a t o r i e s »  ( c e r t i f i c a t e  N o . 
KZ.I.02.1656 dated 27.10.2015).

At present the laboratory is equipped with 
modern instruments and equipment. The main 
activities for it are:

– inspection and testing of bridge structures, 
culverts and other artificial structures on railways 
and highways, assessing the technical condition 
and determining the conditions for carrying the train 
load, developing recommendations for eliminating 
malfunctions and extending the safe operation 
period of the structure;

– training, specialization and internship of 
bridge specialists;
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– field and laboratory studies of grounds of 
foundation bases of existing and projected buildings 
and structures;

– improvement and introduction of precision 
( h i g h - p r e c i s i o n )  m e t h o d s  o f  m e a s u r i n g 
deformations and vibrations;

– realization of quality control of construction 
and reconstruction of artificial structures and 
subgrade;

– vibrodiagnostics and monitoring of the railway 
track and artificial structures in transport.

The existing equipment provides a high degree 
of fault tolerance and noise immunity of the 
measuring instruments and communication lines 
used, the possibility of expanding the configuration 
of the connected measuring devices (sensors), 
their application in the monitoring system, automatic 
recognition and diagnostics of objects.

With the help of laboratory equipment it is 
possible to produce:

– measurement of stresses and relativ e 
deformations in the elements of span structures of 
bridges under the influence of roll ing stock 
simultaneously in 16 sections with the length of the 
measuring path up to 500 m;

– measurement of the dynamic characteristics 
of bridges under the action of roll ing stock 
simultaneously in 8 sections with the length of the 
measuring path up to 250 m;

– plotting of deflection curves and determination 
of the maximum dynamic coefficients of span 
structures of bridges under the influence of rolling 
stock;

– determination of the periods (frequencies) of 
own (free) oscillations of the span structures of 
bridges;

– determination of the amplitude-frequency 
characteristics of span structures of bridges in 
vertical, horizontal-transverse and horizontal-
longitudinal directions;

– assessment of the impact of rolling stock on 
approaching embankments and roadbed.

Identification and analysis of the conditions under 
which the dynamic deformations and displacements 
in the «bridge-train» system have the most unfavorable 
character in operation, was consider by professor 
N. G. Bondar as a paramount task to be studied within 
the framework of the problem of interaction of bridges 
and rolling stock [7].

Since the load from the rol l ing stock is 
concentrated at the locations of the axles of bogies, 
the deflections of the span structure at each 
moment of t ime wil l  correspond to f lexural 
deformations and it is always possible to find its two 
positions giving the greatest and the least static 
deflections of the span structure.

From measured values of flexural deformations, 
knowing the concrete class and the design modulus 
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Pic. 1. Cross section of the span structure with the layout of the measuring instruments: B № 1 and B № 2 – ​
a ribbed beam of the span structure of the bridge; Р

1
 and Р

2 
– ​edges of the beam; Т1, Т2, – ​strain gauges.

Pic. 2. Strain gages FLM‑60–11 with a protective coating from climatic influences on the lower edges of the 
edges of the plates.

Pic. 3. General view of the mobile complex for tensometric measurements: 1 – ​measuring modules; 
2 – ​rechargeable battery; 3 – ​sinusoidal inverter; 4 – ​a semi-industrial computer. 
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of the structural material, according to Hooke’s law, 
one can make a transition to the actual stresses in 
the bridge design.

As an illustration of the capabilities of the mobile 
complex for tensometry, some results of measurements 
of relative flexural deformations of the ferroconcrete 
flight structure of the railway bridge located on the 
118th km of the PK‑6 line Astana–Pavlodar are shown 
below when passing a train consisting of mobile units 
of various types (the so-called «assembly»). The train 
passed with a decrease in speed from 70 km / h at the 
entrance to the bridge to 61 km / h when leaving the 
bridge and consisted of loaded and empty cars, 
gondola cars, cisterns, platforms, bunkers in the 
amount of 74 units. The towing force was electric 
locomotives VL‑80 с and KZ‑8A.

The span structure consists of two ribbed plates 
6 m long. Pic. 1 shows the cross section of the 

structure with an indication of the locations of the 
strain gages on the structural elements.

To further determine the change in the stress-
strain state of the structure from the effects of 
climate factors (alternating freezing and thawing) 
and the rolling stock operated on this site, the 
FLM‑60–11 tensometric sensors installed on the 
structure are protected from external environmental 
influences (Pic. 2).

Periodic measurement of the deformations of 
the structure of the span structure within 2–3 years 
will make it possible to predict the change in its state 
in time and determine the remaining life by bearing 
capacity and carrying capacity.

Pic. 4 shows a complete record of the flexural 
deformation diagram of the stretched zone in the 
middle part of the span at the passage of the 
«assembly», and Pic. 5–9 highlighted in Roman 

Pic. 4. Diagram of flexural deformations in the passage of the modular freight train (2-section electric locomotive 
VL‑80 с + KZ‑8A, gondola cars, tanks, platforms, etc.): a – ​on the first edge of beam № 1; b – ​on the second 

edge of beam № 2.

Pic. 5. Diagram of bending deformations in the passage of the modular freight train (fragment I – ​2-section 
electric locomotive VL‑80 с + KZ‑8A): a – ​on the first edge of the beam № 1; b – on the second edge of beam № 2.

a)

b)

a)

b)
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numerals in Pic. 4 fragments of this record, in more 
detail  and visually i l lustrating the nature of 
deformations under the influence of mobile units of 
various types.

From Pic. 4 it follows that the deformations from 
the impact of laden gondola cars (fragment IV) are 
1,5–1,6 times higher than the deformations from 
the action of locomotives (fragment I). This 
circumstance is due primarily to the difference in 
the bases of bogies and axle loads of locomotives 
and cars and, as a consequence, by the different 
nature of their influence on the structure. The base 
of the bogie of four-axle gondola cars is 1,85 m, 
and the base of electric locomotives KZ‑8A and 
VL‑80 с is 2,6 m and 3,0 m respectively.

In Pic. 5 (fragment I  in Pic. 4) the passage of 
2-section electric locomotives VL‑80 с  and KZ‑8A 
over the span structure is shown in more detail with 
d e m o n s t r a t i o n  o f  q u a n t i t a t i v e  v a l u e s  o f 
deformations. It can be seen from the diagram that 
the difference between the deformations caused 
by the force action of the locomotives reaches 

16–20 %, with the difference between the loads on 
the axis of the locomotives KZ‑8A (25 tf) and 
VL‑80 с (24 tf) in only 4 %. 

This circumstance is also explained by the 
difference in the distances between the axes of the 
wheel sets (base) of the biaxial bogie and the 
location of the load on the span structure–for the 
bogie of the electric locomotive KZ‑8A this distance, 
as already mentioned, is 2,6 m, and for the VL‑80с – ​
3,0 m.

And the greatest deformations are observed 
when the overlying section of the middle section of 
the biaxial bogie of electric locomotives is located 
above the measured section (axial load is located 
symmetrically relative to the middle part of the 
span), while the smallest ones are located at the 
middle parts of their sections (middle of the base) 
and the coupling between them. Since the base of 
the section of the VL‑80 с electric locomotive (7,5 m) 
is smaller than the base of the section KZ‑8A (8,5 
m), the quantitat iv e v alues of the smallest 
deformations at the location of its section centers 

Pic. 6. Diagram of bending deformations in the passage of the modular freight train (fragment II – loaded 
gondola cars and bunkers): a – ​on the first edge of the beam № 1; b – ​on the second edge of beam № 2.

Pic. 7. Diagram of bending deformations in the passage of the modular freight train (fragment III – ​platform and 
gondola car): a– on the first edge of the beam № 1; b –on the second edge of beam № 2.

a)

b)

a)

b)
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above the section exceed the smallest deformations 
at the location above the cross-section of section 
centers of KZ‑8A.

Pic. 6 (fragment II in Pic. 4) shows in more detail 
the passage of loaded gondola cars and bunkers 
located in the head of the train. One can clearly 
define the number of mobile units (in this case, 14 
gondola cars and 2 bunkers), and deformation of 
the span structure caused by the action of each 
individual bogie. It can be seen that bending 
deformations qualitatively and quantitatively differ 
from deformations in the passage of locomotives 
and have a slightly different character.

Firstly, the smallest deformations at the location 
above the cross-section of the middle part of 
gondola cars are much less in size than the 
analogous effects from locomotives, since the base 
of gondola cars is 8,65 m, and here the factor of the 
speed of the train has the greatest influence.

Secondly (and this is clearly demonstrated by 
the quantitative parameters of the greatest 
deformations from the impact of the bogies of the 
1st, 5th and 9th gondola cars shown on the diagram), 

it is different as the effect of the bogies of these 
gondola cars on the fins symmetrically located 
relative to bridge axis of U-shaped ribbed plates in 
the cross section of the bridge, and the front and 
rear bogies of each gondola car separately.

Here, in addition to the change in acceleration 
during the movement of the train, the displacement 
of the center of mass caused by the oscillations of 
the supersorbing part of the carriage across 
(«hunting» and «lateral  rol l ing») and along 
(«galloping») the axle of the bridge, as well as the 
uneven loading of gondola cars and bunkers, can 
be affected.

Pic. 7 (fragment III in Pic. 4) shows that empty 
platforms cause relatively small deformations of the 
span structure (3–4 times less than loaded gondola 
cars), and the gondola car is loaded by 60–70 %. 
The smallest deformations reach zero values, that 
is, a process of cyclic loading and complete 
unloading of the structure takes place. It should be 
noted that the deformations from the gondola cars 
are different in the longitudinal and transverse 
directions.

Pic. 9. Diagram of bending deformations in the passage of a modular freight train (fragment V – ​empty platforms 
and loaded gondola car): a – ​on the first edge of the beam № 1; b – ​on the second edge of beam № 2.

a)

b)

a)

b)

Pic. 8. Diagram of flexural deformations in the passage of the modular freight train (fragment IV – ​loaded 
gondola cars, bunkers, tanks in the middle of the train): a – ​on the first edge of beam № 1; b –on the second 

edge of beam № 2.
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The diagram shown in Pic. 8 (fragment IV in 
Pic. 4), is even more complex, since it is a record 
of the effect of mobile units of various types.

Pic. 9 (fragment V in Pic. 4) shows the process 
of deformation of the span structure at the exit of 
the train. It is seen that the smallest deformations 
are not instantaneous, that is, there is complete 
unloading of the structure over a certain period of 
time.

The base of the platform (8,72 m) slightly 
exceeds the base of the gondola car (8,65 m), and 
here, in addition to the rigidity of the structure, the 
influence of the speed and load factors on the axis 
in the time aspect of the interaction of the bridge 
with the rolling stock (for comparison, see Pic. 7 – ​
fragment III in Pic. 4).

The calculated values of such controlled 
parameters as the stresses in the main beams in 
the middle of the span can be determined both by 
engineering methods and by means of specialized 
computational software that implements finite 
e lement  methods (MIDAS Civ i l ,  APM Civ i l 
Engineering, APM Structure3D module, Cosmos 
M). The advantage of using finite element models 
is the ability to simulate various malfunctions in a 
design, adapting the calculation results to actual 
operating conditions. By deviating the actual 
stresses from the calculated values, it is possible 
to judge about the degree of damage to the 
structures of the span structure of the bridge.

Periodic measurement of the deformations of 
the structure of the span structure within 2–3 years 
will make it possible to predict the change in its state 
in time and determine the remaining life by bearing 
capacity and carrying capacity.

Norms of design [6, paragraph 1.48 *] regulate 
the periods (frequencies) of natural oscillations for 
beam cross-section metal and steel-fiber span 
structures of railway bridges, as well as pedestrian 
and city bridges at the stages of calculation and 
erection.

The natural frequencies of the oscillations of the 
span structure recorded under the passing load will 
differ significantly from the design frequencies due 

to the presence at that time of the design of a 
significant variable mass of the rolling stock. Taking 
into account that the linear mass of metal span 
structures of old design standards lies in the range 
0,5–1,0 tf / m, and the distributed load from the 
currently rolling stock can exceed 10 tf / m, fix the 
true natural vibration frequencies of the structures 
under the moving train is not possible. Therefore, 
the natural vibration frequencies of the structures 
are determined either by the «tai ls» of the 
experimental oscillograms after the departure of 
the load from the span structure, or during rapid 
diagnostics for the excitation of the process of 
structural oscil lations, a pulsed action of a 
concentrated low-mass cargo in the middle of the 
span structure (the method of small impulse 
actions – «jump of the person»).

As an example, Pic. 10 shows the amplitude-
time (a) and amplitude-frequency (b) dependence 
of the oscillations of the beam metal span structure 
of the railway bridge across the river Sarybulak 
railway line Ainabulak–Almaty span 27 m, obtained 
by the impact of a man’s jump weighing 80–90 kg.

The methods for determining the natural 
frequencies of oscillations of beam span structures 
along the «tails» of the experimental vibrations and 
small impulse actions have been tested and widely 
used, for example, in the practice of diagnosing 
road and railway bridges by specialists of TsNIIS 
[8], MADI [9] and SGUPS [10].

Vibrograms of natural oscillations are recorded 
with the help of special highly sensitive seismometers 
that are part of a measuring and computing complex 
for dynamic testing of structures installed in the 
middle of a span on the upper (or lower) belt of one 
of the metal beams. Reduction of the natural 
frequencies of oscillations can serve as an indicator 
of the technical state of the structure.

The results of measurements made with the 
use of complexes can be visualized in the form of 
graphs of changes in deformations and stresses 
(in the case of the known actual elasticity modulus 
of the material), deflection patterns, amplitude-
time and amplitude-frequency dependences of 

Pic. 10. Oscillogram and its spectrum from human jump (maximum spectral emission at a frequency of 5,47 Hz).
 

Hz 

sec 

mkm 

a) 

b) 
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displacements, velocities, and accelerations of the 
oscillatory process. The obtained characteristics 
can serve as initial data that increase the accuracy 
of calculation in the development of the model of 
the structure and the formation of algorithms for 
damage detection.

Some results of full-scale experimental scientific 
research of laboratory staff were published in 
publications included in the Russian Scientific 
Citation Index (RINC) and collections of materials 
of international scientific and practical conferences 
(in which the laboratory staff participated and made 
presentations) published in the Republic of 
Kazakhstan and abroad [11–16].

Conclusions. For the most effective assessment 
of the reliability of bridge structures and the 
correspondence between the design scheme and 
the actual operation of the structures, it is necessary 
to periodically monitor the stress-strain state of the 
structures under operational loads.

Conducting periodic monitoring and vibro
diagnostics in the long term will allow:

1. To ensure the safety of the railway transport 
infrastructure in accordance with the requirements 
of the technical regulations of the Customs Union 
TR TS01/01/2012, 002/2011 and 003/2011.

2. Substantiate the possibility of increasing the 
speed of movement of the rolling stock and the load 
up to 27 tons / axis on the busiest lines.

3. Increase the service life and reduce costs for 
the current maintenance of the track and artificial 
structures.

4. To adopt the most optimal design solutions 
for the design and reconstruction of track and 
artificial structures.
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